• Title/Summary/Keyword: hybrid film

Search Result 533, Processing Time 0.027 seconds

Superhydrophilicity of Titania Hybrid Coating Film Imposed by UV Irradiation without Heat-treatment (저온 경화형 초친수성 티타니아 하이브리드 졸의 제조와 친수성 특성 평가에 관한 연구)

  • Kim, Won-Soo;Park, Won-Kyu
    • Journal of Technologic Dentistry
    • /
    • v.29 no.1
    • /
    • pp.121-131
    • /
    • 2007
  • A preparation process's conditions of aqueous sol which contains anatase-type nano titania particles with photocatalyic properties was established by using Yoldas process, so called, DCS(Destabilization of Colloidal Solution) process in this study. And crystal size change and phase transformation of titania particles in aqueous titania sol depending on reaction conditions was investigated by a light scattering method and XRD analysis of frozen dried powders, respectively. This sol with photo catalytic nano titania particles was used to the following hydrophilic hybrid coating film's fabrication and its properties was evaluated. Subsequently, for coating film using the above mentioned aqueous titania sol, non-aqueous titania sol was prepared without any chemical additives and its time stability according to aging time was investigate. By using the above mentioned aqueous titania sol and non-aqueous sol, a complex oxide coating sol for metal and ceramic substrate and a organic-inorganic hybrid coating sol for polymer substrate was prepared and it's hydrophilicity depending on UV irradiation conditions was evaluated. As a conclusions, the following results were obtained. (1)Aqueous titania sol The average particle size of titania in formed aqueous titania sol was distributed between 20$\sim$90nm range depending on reaction conditions. And the crystal phase of titania powders obtained by frozen drying method was changed from amorphous state to anatase and subsequently transformed to rutile crystal phase and it is attributed to concentration gradient in aqueous sol. (2)Non-aqueous titania sol Non-aqueous titania sol was prepared using methanol as a solvent and a little distilled water for hydrolysis and nitric acid as a catalyst were used. The obtained non-aqueous titania sol was stable at room temperature for 20 days. Additionally, non-aqueous titania sol with addition of chealating reagent such as acethylaceton and ethylene glycol prolonged the stability of sol by six months. (3)Complex sol and hybrid sol with super hydrophilicity The above mentioned aqueous titania sol as a main photocataylic component and non-aqueous titania sol as a binder for coating process was used to prepare a complex sol used for metal, ceramic and wood material substrate and also to prepare the organic-inorganic hybrid sol for polymer substrate such as polycarbonate and polyethylene, in which process APMS(3-Aminopropyltrimethoxysilane), GPTS(3-Glycidoxypropyl-trimethoxysilane) as a hydrophilic silane compound and HEMA(2-Hydroxyethyl methacrylate) as a forming network in hybrid coating film were used. The hybrid coating film such as prepared through this process showed a superhydrophilicity below 1$10^{\circ}$ depending on processing conditions and a pencil's hardness over 6 H.

  • PDF

Gate dielectric based on organic-inorganic hybrid polymer in organic thin-film transistors

  • Lee, Seong-Hui;Jeong, Sun-Ho;Moon, Joo-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.727-729
    • /
    • 2007
  • Inorganic-organic hybrid polymer provides various advantages including low-temperature process, high dielectric constant and direct photo-patterning. The hybrid dielectric was synthesized by the sol-gel process in which an acid-catalyzed solution of Si alkoxide and Zr alkoxide was used as a precursor. The electrical performance of transistors with hybrid dielectric was investigated.

  • PDF

Electrical and thermal properties of polyamideimide-colloid silica nanohybrid for magnetic enameled wire

  • Han, S.W.;Kang, D.P.
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc2
    • /
    • pp.428-432
    • /
    • 2012
  • Polyamidimide (PAI)-colloidal silica (CS) nanohybrid films were synthesized by an advanced sol-gel process. The synthesized PAI-CS hybrid films have a uniform and stable chemical bonding and there is no interfacial defects observed by TEM. The thermal degradation ratio of PAI-CS (10 wt%) hybrid films is delayed by 100 ℃ compared with pure PAI sample determined by on set temperature range in TGA. The dielectric constant of PAI-CS (10 wt%) hybrid films decreases with increasing CS content up to about 5 wt% but increases at higher CS content, which is not explained simply by effective medium therories (EMT). The duration time of PAI-CS (10 wt%) hybrid coil is 38 sec, which is very longer than that of pure PAI coil sample. The PAI-CS (10 wt%) hybrid film has a higher breakdown voltage resistance than the pure PAI film at surge environment and exhibits superior heat resistance. The PAI-CS (10 wt%) sample shows the advanced and stable thermal emission properties in transformer module compared with the pure PAI sample. This result illustrates that the advanced thermal conductivity and expansion properties of PAI-CS sample in the case of appropriate sol-gel processes brings the stable thermal emission in transformer system. Therefore, new PAI-CS hybrid samples with such stable thermal emission properties are expected to be used as a high functional coating application in ET, IT and electric power products.

Fabricated SWCNT-PEDOT Hybrid Flim Using by SAW-ED and Their Optoelectronic Properties

  • Jo, Sang-Hyeon;Yang, Jong-Won;Kim, Jin-Yeol
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.237.2-237.2
    • /
    • 2011
  • SAW-ED를 이용하는 박막공정 기술을 통하여 나노레벨의 SWCNT 와 PEDOT의 thin film 및 hybrid화된 film구조를 얻을 수 있었다. SWCNT와 전도성고분자와의 hybridization을 통해 균일상의 표면 morphology를 갖는 고전도성 투명 필름을 제작하고, 이들의 전기광학적 성질을 확인하였다. SAW-ED를 이용하는 박막공정 기술은 나노입자 및 나노구조물의 박막화 패턴화를 포함하는 새로운 deposition 기술로서의 응용성을 가지고 있으며, 본 연구에서는 SWCNT와 전도성고분자를 이용하여 이를 확인하였다.

  • PDF

Fabrication of Flexible Inorganic/Organic Hybrid Thin-Film Transistors by All Ink-Jet Printed Components on Plastic Substrate

  • Kim, Dong-Jo;Lee, Seong-Hui;Moon, Joo-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1463-1465
    • /
    • 2008
  • We report all-ink-jet printed inorganic/organic hybrid TFTs on plastic substrates. We have investigated the optimal printing conditions to make uniform patterned layers of gate electrode, dielectrics, source/drain electrodes, and semiconductor as a coplanar type TFT in a successive manner. All ink-jet printed devices have good mechanical flexibility and current modulation characteristic even when bent.

  • PDF

Fabrication of Silver Nanowire-Graphene Oxide Hybrid Transparent Conductive Thin Film with Improved Mechanical Stability (기계적 안정성이 향상된 은나노와이어-그래핀옥사이드 하이브리드 투명 전도성 박막의 제작)

  • Kim, Ju-Tae;Woo, Ju Yeon;Han, Chang-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.10
    • /
    • pp.903-909
    • /
    • 2015
  • In this study, we used GO (graphene oxide) in order to enhance the adhesion between Ag NWs (nanowires) and substrates. By using a mixture solution of GO and Ag NW, a vacuum filtration process was used to fabricate a 50nm diameter thin film. Next, by using a light annealing process, the mechanical and electrical stability of Ag NW network was improved without any other treatment. The physical properties of the Ag NW - GO hybrid transparent conductive thin film was characterized in terms of a bending test, resistance and transmittance test, and nanoscale imaging using field-emission scanning electron microscopy.

Characterizations of Flexible Clay-PVA Hybrid Films: Thermo-optical Properties, Morphology, and Gas Permeability (유연한 점토-폴리(비닐 알코올) 하이브리드 필름의 특성 연구: 열적.광학적 성질, 모폴로지, 및 가스 투과성)

  • Shin, Ji-Eun;Ham, Mi-Ran;Kim, Jeong-Cheol;Chang, Jin-Hae
    • Polymer(Korea)
    • /
    • v.35 no.5
    • /
    • pp.402-408
    • /
    • 2011
  • To improve $Na^+$-saponite(SPT) film flexibility, we prepared SPT hybrid clay films with various poly(vinyl alcohol) (PVA) concentrations(0~10 wt%) using the solution intercalation method. In this study, we investigated the thermo-optical properties, morphology, and gas permeability of the SPT hybrid films. We also examined the relationship between the film properties and PVA content using wide angle X-ray diffraction measurements(XRD), field emission scanning electron microscopy(FESEM), differential scanning calorimetry(DSC), thermogravimetric analysis(TGA), thermomechanical analysis(TMA), ultraviolet-visible(UV-vis) spectroscopy, and oxygen transmission rate($O_2$TR) testing. The properties of the clay hybrid films were strongly affected by PVA filler content. The presence of a small amount of PVA was sufficient to improve the flexibility of SPT hybrid films.

후막 및 박막 하이브리드 마이크로 회로 기술

  • Lee Jun
    • Proceedings of the Korean Ceranic Society Conference
    • /
    • 1986.12a
    • /
    • pp.237-255
    • /
    • 1986
  • The thick and thin film hybrid microcircuit technologies are reviewed. The materials, te processing conditions and the final properties of thick and thin film conductors, resistors dielectrics are discussed.

  • PDF

Preparation and Characterization of Hybrid Ozone Resistance Coating Film Using Carbon Nanotube (탄소나노튜브를 이용한 하이브리드 내오존성 코팅 막의 제조 및 특성)

  • Kim, Sung Rae;Lee, Sang Goo;Yang, Jeong Min;Lee, Jong Dae
    • Polymer(Korea)
    • /
    • v.38 no.5
    • /
    • pp.573-579
    • /
    • 2014
  • The effect of synthesis conditions such as carbon nanotube (CNT), 2,2,2-trifluoroethylmethacrylate (3FMA), and composition of organic-inorganic material in ozone resistance and surface characteristics of ultraviolet cured organic-inorganic hybrid coating film has been investigated. Coating solution was prepared using tetraethoxysilane (TEOS), silane coupling agent methacryloyloxypropyltrimethoxysilane (MPTMS), 3FMA, various organic materials with acrylate group, and CNT, then bar-coated on substrates using applicator, and densified by UV-curing. It was found that ozone resistance and adhesion of the coating film were strongly dependent upon contents of TEOS, 3FMA, and CNT. Especially, ozone resistance, adhesion, and surface hardness of coating film with CNT were improved, relatively. Ozone resistance of coating film with a high TEOS content was increased, but adhesion was decreased. In addition, it was also found that ozone resistance of coating film was increased with contents of 3FMA. On the other hand, surface hardness was decreased with increase of 3FMA.

Life Time Characteristics of OLED Device with AlOx Passivation Film Deposited by RF Magnetron Sputtering (RF 마그네트론 스퍼터링으로 증착된 AlOx 봉지 박막을 갖는 OLED 소자의 수명 특성)

  • An, O-Jin;Ju, Sung-Hoo;Yang, Jae-Woong
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.6
    • /
    • pp.272-277
    • /
    • 2010
  • We investigated the life time characteristics of OLED device with aluminium oxide ($AlO_x$) passivation film on glass substrate and polyethylene terephthalate (PET) substrate by RF magnetron sputtering for the transparent barrier film applied to flexible OLED device. Basic buffer layer was determined as $Alq_3$(500 nm)-LiF(300 nm)-Al(1200 nm), and the most suitable aluminium oxide ($AlO_x$) film have been formed when the partial volume ratio of oxygen was 20% and the sputtering power was 100 watt and the minimum thickness of buffer was $2\;{\mu}m$. $AlO_x$/epoxy hybrid film was also used as a effective passivation layer for the purpose of improving life time characteristics of OLED devices with the glass substrate and the plastic substrate. Besides, the simultaneous deposition of $AlO_x$/epoxy film on back side of PET could result in better improvement of life time.