• Title/Summary/Keyword: hybrid enzyme

Search Result 70, Processing Time 0.036 seconds

A Biochemical Study for the Development of Genetic Marker on Salmonids in Korea (한국산 연어류에서 Genetic Marker 개발을 위한 생화학적 연구)

  • HONG Kyung-Pyo;MYOUNG Jung-Goo;SON Jin-Ki;PARK Chul-Won
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.1
    • /
    • pp.83-88
    • /
    • 1994
  • For the purpose of genetic stock indentification of three species of salmonid fishs and their hybrid, lactate dehydrogenase(LDH), malate dehydrogenase(MDH), isocitrate dehydrogenase(IDH), a-gylycerophosphate dehydrogenase(a-GPDH), malic enzyme(ME), 6-phospho-gluconate dehydrogenase(6-PGD), phosphoglucose isomerase(PGI) and phospho-glucomutase(PGM) from skeletal muscle, liver, heart and gill tissues in all three species were analyzed. Chum and masu salmon showed no polymorphic patterns in all isozyme loci, however rainbow trout were found to have polymorphic patterns at MDH-B, LDH and IDH loci. Especially, significant differences were found at MDH-B loci between the three species and the IDH patterns of rainbow trout were also different from the other two species. These loci therefore can be utilized as efficient genetic markers for the identification of hybrids and improve the efficiency of fish breeding. There was no difference except PGI between diploid and triploid isozyme patterns but PGI showed some potential as a marker for triploid in masu salmon.

  • PDF

Identification and Cloning of jipA Encoding a Polypeptide That Interacts with a Homolog of Yeast Rad6, UVSJ in Aspergillus nidulans

  • Cho, Jae-Han;Yun, Seok-Soong;Jang, Young-Kug;Cha, Mee-Jeong;Kwon, Nak-Jung;Chae, Suhn-Kee
    • Journal of Microbiology
    • /
    • v.41 no.1
    • /
    • pp.46-51
    • /
    • 2003
  • RAD6 in yeast mediates postreplication DNA repair and is responsible for DNA-damage induced mutations. RAD6 encodes ubiquitin-conjugating enzyme that is well conserved among eukaryotic organisms. However, the molecular targets and consequences of their ubiquitination by Rad6 have remained elusive. In Aspergillus nidulans, a RAD6 homolog has been isolated and shown to be an allele of uvs). We screened a CDNA library to isolate UVSJ-interacting proteins by the yeast two-hybrid system. JIPA was identified as an interactor of UVSJ. Their interaction was confirmed in vitro by a GST-pull down assay. JIPA was also able to interact with mutant UVSJ proteins, UVSJl and the active site cysteine mutant UVSJ-C88A. The N- and the C-terminal regions of UVSJ required for the interaction with UVSH, a RAD18 homolog of yeast which physically interacts with Rad6, were not necessary for the JIPA and UVSJ interactions. About 1.4 kb jipA transcript was detected in Northern analysis and its amount was not significantly increased in response to DNA-damaging agents. A genomic DNA clone of the jipA gene was isolated from a chromosome I specific genomic library by PCR-sib selection. Sequence determination of genomic and cDNA of jipA revealed an ORF of 893 bp interrupted by 2 introns, encoding a putative polypeptide of 262 amino acids. JIPA has 33% amino acid sequence identity to TIP41 of Saccharomyces cerevisiae which negatively regulates the TOR signaling pathway.

Development of Lipase Hyper-producing Strain from Hybrids between Aspergillus niger and Penicillium notatum by Nuclear Transfer (핵전이에 의한 Aspergillus niger와 Penicillium notatum 잡종에서의 lipase 고생산 균주의 개발)

  • Yang, Young-Ki;Moon, Myeng-Nim;Lee, Yoon-Hee;Kang, Hee-Kyoung;Lee, Jung-Sup;Lim, Chae-Young;Kim, Jong-Se;Rhee, Young-Ha
    • The Korean Journal of Mycology
    • /
    • v.25 no.2 s.81
    • /
    • pp.143-151
    • /
    • 1997
  • Interspecific hybrids between Aspergillus niger and Penicillium notatum (Tyr-), hyperlipolytic enzyme-producing fungi, were obtained by nuclear transfer technique. Optimal conditions for formation of intergeneric hybrids were investigated. Maximum production of protoplasts was obtained by 1% Novozyme 234 at $30^{\circ}C$ for 3 hrs and the most effective osmotic stabilizers for the isolation of protoplasts were 0.6 M KCl. Frequencies of hybrid formation by nuclear transfer were $3.8{\times}10^{-3}{\sim}1.3{\times}10^{-3}$. From the observation of genetic stability, conidial size, DNA content, and nuclear stain, it was suggested that their karyotypes are aneuploid. The hybrids showed $1.2{\sim}1.7$ fold higher lipase activities than parental strains. It was strongly supported by results of this study that nuclear transfer technique is much more efficient in the formation of intergeneric hybrids than protoplast fusion and is very useful for the improvement of strains.

  • PDF

Enhanced and Targeted Expression of Fungal Phytase in Saccharomyces cerevisiae

  • LIM, YOUNG-YI;EUN-HA PARK;JI-HYE KIM;SEUNG-MOON PARK;HYO-SANG JANG;YOUN-JE PARK;SEWANG YOON;MOON-SIK YANG;DAE-HYUK KIM
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.6
    • /
    • pp.915-921
    • /
    • 2001
  • Phytase improves the bioavailability of phytate phosphorus in plant foods to humans and animals, and reduces the phosphorus pollution of animal waste. In order to express a high level of fungal phytase in Saccharomyces cerevisiae, various expression vectors were constructed with different combinations of promoters, translation enhancers, signal peptides, and terminator. Three different promoters fused to the phytase gene (phyA) from Aspergillus niger were tested: a galactokinase (GAL1) promoter, glyceraldehyde-3-phosphate dehydrogenase (GPD) promoter, and yeast hybrid ADH2-GPD promoter consisting of alcohol dehydrogenase II (ADH2) and a GPD promoter. The signal peptides of phytase, glucose oxidase (GO), and rice amylase 1A(RAmy1A) were included. Plus, the translation enhancers of the ${\Omega}$ sequence and UTR70 from the tobacco mosaic virus (TMV) and spinach, respectively, were also tested. Among the recombinant vectors, pGphyA06 containing the GPD promoter, the ${\Omega}$ sequence, RAmy1A, and GAL7 terminator expressed the highest phytase activity in a culture filtrate, which was estimated at 20 IU/ml. An intracellular localization of the expressed phytase activity in a culture filtrate, which was estimated at 20 IU/ml. An intracellular localization of the expressed phytase was also performed by inserting an endoplasmic reticulum (ER) retention signal, KDEL sequence, into the C-terminus of the phytase within the vector pHphyA-6. It appeared that the KDEL sequence directed most of the early expression of phytase into the intracellular compartment yet more than $60\%$ of the total phytase activity was still retained within the cell even after the prolonged (>3 days) incubation of the transformant. However, the intracellular enzyme activity of the transformant without a KDEL sequence was as high as that of the extracellular one, thereby strongly suggesting that the secretion of phytase in S. cerevisiae appeared to be the rate-limiting step for the expression of a large amount of extracellular recombinant phytase, when compared with other yeasts.

  • PDF

A ubiquitin-proteasome system as a determination factor involved in methylmercury toxicity

  • Hwang, Gi-Wook
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2006.11a
    • /
    • pp.46-54
    • /
    • 2006
  • The methylmercury (MeHg) is a toxic environmental pollutant, causing serious neurological and developmental effects in humans. Recent epidemiological studies have indicated that ingestion of MeHg in fish during pregnancy can result in neuroethological effects in the offspring. However, the mechanism underlying the MeHg-toxicity is not fully understood. To elucidate the mechanisms of toxicity of MeHg and of defense against MeHg, we searched for factors that determine the sensitivity of yeast cells to MeHg, and found that overexpression of Cdc34, a ubiquitin-conjugating enzyme (E2) that is a component of the ubiquitin-proteasome (UP) system, induces a resistance to MeHg toxicity in both yeast and human cells. The UP system is involved in the intracellular degradation of proteins. When Cdc34 is overexpressed in cells, ubiquitination reactions are activated and the degradation of certain proteins by the UP system is enhanced. Therefore, it seems likely that certain as-yet-unidentified proteins that increase MeHg toxicity might exist in cons and that toxicity might be reduced by the enhanced degradation of such proteins, mediated by the UP system, when Cdc34 is overexpressed. SCF ubiquitin-ligase is a component of UP system and consists of Skpl, the scaffold protein Cdc53, the RING-finger protein Hrt1, and one member of the family of F-box proteins. The F-box proteins directly bind to the substrates and are the determinants of substrate specificity of SCF. Therefore, we searched for the f-box protein that cofers resistance to MeHg, and found that overexpression of Hrt3 or Yi1224w induced resistance to MeHg toxicity in yeast cells. Since the protein(5) that enhance toxicity of MeHg might plausibly be induced in substrates of both f-box proteins, we next searched for substrate proteins that are recognized by Hrt3 or Y1r224w using two-hybrid screen. We found that Did3 or Crsl interacts with Hrt3; and Eno2 interacts with Yir224w. The yeast cells that overexpressed each those proteins showed hypersensitivity to MeHg, respectively, indicating that those proteins enhance the MeHg toxicity. Both Dld3 and Eno2 are proteins involved in the synthesis of pyruvate, and overexpression of both proteins might induce increase in interacellular levels of pyruvate. Deletion of Yi1006w that transports pyruvate into the mitochondria induced aresistance to MeHg. These results suggest that the promotion of the pyruvate irdlowinto the mitochondria might enhance MeHg toxicity. This study providesimportant keyfor the elucidauon of the molecular mechanism of MeHg toxicity.

  • PDF

Protoplast Fusion of Nicotiana glauca and Solanum tuberosum Using Selectable Marker Genes (표식유전자를 이용한 담배와 감자의 원형질체 융합)

  • Park, Tae-Eun;Chung, Hae-Joun
    • The Journal of Natural Sciences
    • /
    • v.4
    • /
    • pp.103-142
    • /
    • 1991
  • These studies were carried out to select somatic hybrid using selectable marker genes of Nicotiana glauca transformed by NPTII gene and Solanum tuberosum transformed by T- DNA, and to study characteristics of transformant. The results are summarized as follows. 1. Crown gall tumors and hairy roots were formed on potato tuber disc infected by A. tumefaciens Ach5 and A. rhizogenes ATCC15834. These tumors and roots could be grown on the phytohormone free media. 2. Callus formation from hairy root was prompted on the medium containing 2, 4 D 2mg/I with casein hydrolysate lg/l. 3. The survival ratio of crown gall tumor callus derived from potato increased on the medium containing the activated charcoal 0. 5-2. 0mg/I because of the preventions on the other hand, hairy roots were necrosis on the same medium. 4. Callus derived from hairy root were excellently grown for a short time by suspension culture on liquid medium containing 2, 4-D 2mg/I and casein hydrolysate lg/l. 5. The binary vector pGA643 was mobilized from E. coli MC1000 into wild type Agrobacteriurn tumefaciens Ach5, A. tumefaciens $A_4T$ and disarmed A. tuniefaciens LBA4404 using a triparental mating method with E. ccli HB1O1/pRK2013. Transconjugants were obtained on the minimal media containing tetracycline and kanamycin. pGA643 vectors were confirmed by electrophoresis on 0.7% agarose gel. 6. Kanamycin resistant calli were selected on the media supplemented with 2, 4-D 0.5mg/1 and kanamycin $100\mug$/ml after co- cultivating with tobacco stem explants and A. tumefaciens LBA4404/pGA643, and selected calli propagated on the same medium. 7. The multiple shoots were regenerated from kanamycin resistant calli on the MS medium containing BA 2mg/l. 8. Leaf segments of transformed shoot were able to grow vigorusly on the medium supplemented with high concentration of kanamycin $1000\mug$/ml. 9. Kanamycin resistant shoots were rooting and elongated on medium containing kanamycin $100\mug$/ml, but normal shoot were not. 10. For the production of protoplast from potato calli transformed by T-DNA and mesophyll tissue transformed by NPTII gene, the former was isolated in the enzyme mixture of 2.0% celluase Onozuka R-10, 1.0% dricelase, 1.0% macerozyme. and 0.5M mannitol, the latter was isolated in the enzyme mixture 1.0% Celluase Onozuka R-10, 0.3% macerozyme, and 0.7M mannitol. 11. The optimal concentrationn of mannitol in the enzyme mixture for high protoplast yield was 0.8M at both transformed tobacco mesophyll and potato callus. The viabilities of protoplast were shown above 90%, respectively. 12. Both tobacco mesophyll and potato callus protoplasts were fused by using PEG solution. Cell walls were regenerated on hormone free media supplemented with kanamycin after 5 days, and colonies were observed after 4 weeks culture.

  • PDF

Inhibitory Effect of Purple Corn 'Seakso 1' Husk and Cob Extracts on Lipid Accumulation in Oleic Acid- Induced Non-Alcoholic Fatty Liver Disease HepG2 Model (올레산 유도 비알코올성 지방간세포에서 자색옥수수 색소 1호 포엽과 속대 추출물의 지질 축적 억제 효과)

  • Lee, Ki Yeon;Kim, Tae hee;Kim, Jai Eun;Bae, Son wha;Park, A-Reum;Lee, Hyo Young;Choi, Sun jin;Park, Jong yeol;Kwon, Soon bae;Kim, Hee Yeon
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.1
    • /
    • pp.93-101
    • /
    • 2020
  • Seakso 1, a maize hybrid, was developed in 2008 by Gangwon Agricultural Research and Extension Services in Korea and registered in 2011. It is single-cross hybrid, semi-flint, deep-purple variety of corn, variety of are yellow, while the husks and cobs are purple. Due to the sensitivity of Seakso 1 to excess moisture after seeding, water supply should be carefully managed, and it should be harvested at a suitable time to obtain the highest anthocyanin content. This study investigated the hepatoprotective effect of Saekso 1 corn husk and cob extracts (EHCS) in oleic acid-induced non-alcoholic fatty liver disease (NAFLD) in HepG2 cells. EHCS showed a high level of lipid accumulation inhibiting effect. EHCS also suppressed triglyceride accumulation and inhibited expression of lipid marker genes, such as sterol regulatory element binding protein-1c (SREBP-1c) and sterol regulatory element binding protein-1a (SREBP-1a). Analysis by western blot of the expression of p-AMPK, p-SREBP1, PPARα, and FAS proteins showed that the incidence of SREBP1 protein, a major factor involved in lipid metabolism in the liver, has decreased significantly after treatment with the extracts. Moreover, the protein-induced expression of FAS, a major enzyme involved in the biosynthetic pathways of fatty acids, was decreased significantly in all concentrations. These results suggest that EHCS is a potent agent for the treatment of NAFLD.

Evolutionary Explanation for Beauveria bassiana Being a Potent Biological Control Agent Against Agricultural Pests

  • Han, Jae-Gu
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.05a
    • /
    • pp.27-28
    • /
    • 2014
  • Beauveria bassiana (Cordycipitaceae, Hypocreales, Ascomycota) is an anamorphic fungus having a potential to be used as a biological control agent because it parasitizes a wide range of arthropod hosts including termites, aphids, beetles and many other insects. A number of bioactive secondary metabolites (SMs) have been isolated from B. bassiana and functionally verified. Among them, beauvericin and bassianolide are cyclic depsipeptides with antibiotic and insecticidal effects belonging to the enniatin family. Non-ribosomal peptide synthetases (NRPSs) play a crucial role in the synthesis of these secondary metabolites. NRPSs are modularly organized multienzyme complexes in which each module is responsible for the elongation of proteinogenic and non-protein amino acids, as well as carboxyl and hydroxyacids. A minimum of three domains are necessary for one NRPS elongation module: an adenylation (A) domain for substrate recognition and activation; a tholation (T) domain that tethers the growing peptide chain and the incoming aminoacyl unit; and a condensation (C) domain to catalyze peptide bond formation. Some of the optional domains include epimerization (E), heterocyclization (Cy) and oxidation (Ox) domains, which may modify the enzyme-bound precursors or intermediates. In the present study, we analyzed genomes of B. bassiana and its allied species in Hypocreales to verify the distribution of NRPS-encoding genes involving biosynthesis of beauvericin and bassianolide, and to unveil the evolutionary processes of the gene clusters. Initially, we retrieved completely or partially assembled genomic sequences of fungal species belonging to Hypocreales from public databases. SM biosynthesizing genes were predicted from the selected genomes using antiSMASH program. Adenylation (A) domains were extracted from the predicted NRPS, NRPS-like and NRPS-PKS hybrid genes, and used them to construct a phylogenetic tree. Based on the preliminary results of SM biosynthetic gene prediction in B. bassiana, we analyzed the conserved gene orders of beauvericin and bassianolide biosynthetic gene clusters among the hypocrealean fungi. Reciprocal best blast hit (RBH) approach was performed to identify the regions orthologous to the biosynthetic gene cluster in the selected fungal genomes. A clear recombination pattern was recognized in the inferred A-domain tree in which A-domains in the 1st and 2nd modules of beauvericin and bassianolide synthetases were grouped in CYCLO and EAS clades, respectively, suggesting that two modules of each synthetase have evolved independently. In addition, inferred topologies were congruent with the species phylogeny of Cordycipitaceae, indicating that the gene fusion event have occurred before the species divergence. Beauvericin and bassianolide synthetases turned out to possess identical domain organization as C-A-T-C-A-NM-T-T-C. We also predicted precursors of beauvericin and bassianolide synthetases based on the extracted signature residues in A-domain core motifs. The result showed that the A-domains in the 1st module of both synthetases select D-2-hydroxyisovalerate (D-Hiv), while A-domains in the 2nd modules specifically activate L-phenylalanine (Phe) in beauvericin synthetase and leucine (Leu) in bassianolide synthetase. antiSMASH ver. 2.0 predicted 15 genes in the beauvericin biosynthetic gene cluster of the B. bassiana genome dispersed across a total length of approximately 50kb. The beauvericin biosynthetic gene cluster contains beauvericin synthetase as well as kivr gene encoding NADPH-dependent ketoisovalerate reductase which is necessary to convert 2-ketoisovalarate to D-Hiv and a gene encoding a putative Gal4-like transcriptional regulator. Our syntenic comparison showed that species in Cordycipitaceae have almost conserved beauvericin biosynthetic gene cluster although the gene order and direction were sometimes variable. It is intriguing that there is no region orthologous to beauvericin synthetase gene in Cordyceps militaris genome. It is likely that beauvericin synthetase was present in common ancestor of Cordycipitaceae but selective gene loss has occurred in several species including C. militaris. Putative bassianolide biosynthetic gene cluster consisted of 16 genes including bassianolide synthetase, cytochrome P450 monooxygenase, and putative Gal4-like transcriptional regulator genes. Our synteny analysis found that only B. bassiana possessed a bassianolide synthetase gene among the studied fungi. This result is consistent with the groupings in A-domain tree in which bassianolide synthetase gene found in B. bassiana was not grouped with NRPS genes predicted in other species. We hypothesized that bassianolide biosynthesizing cluster genes in B. bassiana are possibly acquired by horizontal gene transfer (HGT) from distantly related fungi. The present study showed that B. bassiana is the only species capable of producing both beauvericin and bassianolide. This property led to B. bassiana infect multiple hosts and to be a potential biological control agent against agricultural pests.

  • PDF

Development of Assay Methods for Enterotoxin of Escherichia coli Employing the Hybridoma Technology (잡종세포종기법을 이용한 대장균의 장독소 측정법 개발)

  • Kim, Moon-Kyo;Cho, Myung-Je;Park, Kyung-Hee;Lee, Woo-Kon;Kim, Yoon-Won;Choi, Myung-Sik;Park, Joong-Soo;Cha, Chang-Yong;Chang, Woo-Hyun;Chung, Hong-Keun
    • The Journal of the Korean Society for Microbiology
    • /
    • v.21 no.1
    • /
    • pp.151-161
    • /
    • 1986
  • In order to develop sensitive and sepcific assay methods for E. coli heat labile enterotoxin(LT) hybridoma cell lines secreting LT specific monoclonal antibody were obtained. LT was purified from cell lysate of E. coli O15H11. The steps included disruption of bacteria by French pressure, DEAE Sephacel ion exchange chromatography, Sephadex G200 gel filtration, and second DEAE Sephacel ion exchange chromatography, successively. Spleen cells from Balb/c mice immunized with the purified LT and $HGPRT^{(-)}$ plasmacytomas, $P3{\times}63Ag8.V653$ were mixed and fused by 50% (w/v) PEG. Hybrid cells were grown in 308 wells out of 360 wells, and 13 wells out of them secreted antibodies reacting to LT. Among these hybridoma cell 1G8-1D1 cell line was selected since it had produced high-titered monoclonal antibody continuously. By using culture supernatant and ascites from 1G8-1D1 cells the monoclonal antibody was characterized, and an assay system for detecting enterotoxigenic E. coli was established by double sandwich enzyme-linked immunosorbent assay (ELISA). The following results were obtained. 1. Antibody titers of culture supernatant and ascites from 1G8-1D1 hybridoma cells were 512, and 102, 400, respectively by GM1-ELISA and its immunoglobulin class was IgM. 2. The maximum absorption ratio of 1G8-1D1 cell culture supernatant to LT was 90% at $300\;{\mu}g/ml$ of LT concentration. LT concentration shown at 50% absorption ratio was $103.45{\mu}g$ and the absorption ratio was decreased with tile reduction of LT concentration. This result suggests that monoclonal antibody from 1G8-1D1 hybridoma cell bound with LT specifically. 3. The reactivities of 1G8-1D1 cell culture supernatant to LT and V. cholerae enterotoxin(CT) were 0.886 and 0.142(O.D. at 492nm) measured by the GM1-ELISA, indicating 1G8-1D1 monoclonal antibody reacted specifically with LT but not with CT. 4. The addition of 0.1ml of ascites to 0.6mg and 0.12mg of LT decreased the vascular permeability factor to 41% and 44% respectively, but it did not completely neutralize LT. 5. By double sandwich ELISA using monoclonal antibody, as little as 75ng of the purified LT per ml could be detected. 6. The results by assay of detecting LT in culture supernatants of 14 wild strains E. coli isolated from diarrhea patients by the double sandwich ELISA were almost the same level as those by reverse passive latex agglutination.

  • PDF

Inhibition of Pancreatic Lipase Activity and Adipocyte Differentiation in 3T3-L1 Cells Treated with Purple Corn Husk and Cob Extracts (자색옥수수 포엽과 속대 추출물의 리파아제 저해활성 및 3T3-L1 지방전구세포에서의 지방분화 억제효과)

  • Lee, Ki Yeon;Hong, Soo Young;Kim, Tae Hee;Kim, Jai Eun;Park, A-Reum;Noh, Hee Sun;Kim, Si Chang;Park, Jong Yeol;Ahn, Mun Seob;Jeong, Won Jin;Kim, Hee Yeon
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.2
    • /
    • pp.131-139
    • /
    • 2018
  • Our review begins with the maize hybrid for grain, called 'Seakso 1,' which was developed in 2008 by the Gangwon Agricultural Research and Extension Services in Korea, and subsequently registered in 2011. In this study, we aimed to investigate the lipid metabolic enzyme activity and inhibitory effect on the adipocyte differentiation, in 3T3-L1 cells of the identified Seakso 1 corn husk and cob extracts (EHCS). We investigated the pancreatic lipase inhibitory effect and anti-adipogenic effect of EHCS.The lipid accumulation and adipocyte differentiation were measured by the procedure of Oil Red O staining, Real-time PCR and the Western blot analysis. The pancreatic lipase inhibitory activity of EHCS was measured at higher levels than those of the positive control (orlistat) at 100, 500, and $1,000{\mu}g/mL$. In particular, EHCS was noted as being significantly inhibited and including a measured adipocyte differentiation and lipid accumulation, when treated during the adipocyte differentiation process in 3T3-L1 cells. Based on the Oil Red O staining, EHCS inhibited lipid accumulation at 19.19%, 33.30% at $1000{\mu}g/mL$, $2000{\mu}g/mL$, respectively. The real-time PCR and Western blot analysis showed that EHCS significantly decreased in the mRNA expression and protein level of obesity-related factors, such as peroxisome-proliferatorsactivated-receptor-${\gamma}$ ($PPAR{\gamma}$) and CCAAT enhancer-binding-proteins ${\alpha}$ ($C/EBP{\alpha}$). This study potentially suggests that the Saekso 1 corn husk and cob extracts may improve lipid metabolism and reduce lipid accumulation.