• Title/Summary/Keyword: hyaluronan

Search Result 60, Processing Time 0.047 seconds

Anti-skin aging activities of ethanol extract from Echinodorus cordifolius L. in human keratinocytes (물수선화 에탄올 추출물의 피부 노화 억제 효과)

  • Haeun Mun;Seung-Hong Lee
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.4
    • /
    • pp.405-412
    • /
    • 2022
  • Echinodorus cordifolius (L.) is an aquatic plant in the family Alismataceae. The anti-skin aging activity of E. cordifolius (L.) has not been yet reported. Therefore, the objective of the present study was to prepare 70% ethanol extract (ECEE) from E. cordifolius (L.) and investigate their antioxidant and anti-hyaluronidase activities for confirm the potential of anti-skin aging. ECEE showed good activities of DPPH, hydrogen peroxide scavenging, and hyaluronidase inhibition, with EC50 and IC50 values of 31.4, 300, and 450 ㎍/mL, respectively. ECEE also significantly improved cell viability and inhibited intracellular reactive oxygen species dose-dependently against 1 mM hydrogen peroxide-induced oxidative stress in immortalized human keratinocytes (HaCaT cells). Furthermore, ECEE upregulated hyaluronic acid (HA)-synthesizing enzyme hyaluronan synthase 2 (HAS2) expression level, but downregulated expression level of HA-degrading enzyme hyaluronidase 2, resulting in increased HA production in HaCaT cells. Taken together, these results suggest that ECEE shows antioxidant and anti-hyaluronidase potential and could be a functional cosmetic ingredients for anti-skin aging.

AR-mTOR-SRF Axis Regulates HMMR Expression in Human Prostate Cancer Cells

  • Sun, You;Li, Zewu;Song, Kyung
    • Biomolecules & Therapeutics
    • /
    • v.29 no.6
    • /
    • pp.667-677
    • /
    • 2021
  • The elevated expression of the hyaluronan-mediated motility receptor (HMMR) is known to be highly associated with tumor progression in prostate cancer, but the molecular mechanisms underlying the regulation of HMMR expression remain unclear. Here, we report that mammalian target of rapamycin (mTOR) is a key regulator of HMMR expression, for which its kinase activity is required. Pharmacological inhibitors of mTOR, such as rapamycin and Torin2, markedly suppressed the mRNA level as well as the protein level of HMMR in LNCaP and PC-3 cells. Our data demonstrate that such regulation occurs at the transcription level. HMMR promoter reporter assays revealed that the transcription factor SRF is responsible for the mTOR-mediated transcriptional regulation of HMMR gene. Consistently, the suppression of HMMR expression by Torin2 was noticeably reversed by the overexpression of SRF. Moreover, our findings suggest that the SRF binding sites responsible for the transcriptional regulation of HMMR through the mTOR-SRF axis are located in HMMR promoter sequences carrying the first intron, downstream of the translational start site. Furthermore, the upregulation of HMMR by DHT was abolished by stimulation with rapamycin, prior to DHT treatment, suggesting that mTOR activity is required for the induction of HMMR expression by androgen. Collectively, our study provides new mechanistic insights into the role of mTOR/SRF/AR signaling in HMMR regulation in prostate cancer cells.

The Anti-Wrinkle Mechanism of Ganoderma lucidum mycelial with Acorus gramineus callus in UVB Treated HaCaT Keratinocytes

  • Eun-Sil Ko;Sang-Min Cho;Sol Lee;Ji-Hye Jung;Jea-Ran Kang;Jong-Hoon Jeong;Dong-gue Shin;Jeong Hun Seo;Jeong-Dan Cha
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.08a
    • /
    • pp.74-74
    • /
    • 2020
  • Skin is continuously exposed to a variety of environmental stresses, including ultraviolet (UV) radiation. UVB is an inherent component of sunlight that crosses the epidermis and reaches the upper dermis, leading to increased oxidative stress, activation of inflammatory response and accumulation of DNA damage among other effects. In the present study, the anti-wrinkle mechanism of Acorus gramineus callus culture supernatant (GB-AGS-PSC) was elucidated in UVB treated HaCaT keratinocytes. GB-AGS-PSC prevented the matrix metalloprotease 1 (MMP-1), elastin, and pro-collagen product and cytotoxicity and SOD inhibition. Quantitative polymerase chain reaction showed that GB-AGS-PSC-treated cells displayed dose-dependent increase in messenger RNA expression levels of Aquaporin 3 (AQP3), Keratin 1(KRT1), fillagrin, and hyaluronan synthase-2 (HAS 2) and decreased expression levels of matrix metalloproteinase-3, -9, and -13 in UVB treated HaCaT keratinocytes. Additionally, GB-AGS-PSC suppressed TNF-α, IL-1β, and IL-8 product for inflammatory responses in UVB treated HaCaT keratinocytes. Therefore, GB-AGS-PSC may be useful as an anti-photoaging resource for the skin.

  • PDF

Industrialization possibilities of purified pig sperm hyaluronidase

  • Soojin Park;In-Soo Myeong;Gabbine Wee;Ekyune Kim
    • Journal of Animal Science and Technology
    • /
    • v.65 no.6
    • /
    • pp.1205-1213
    • /
    • 2023
  • The goals of the present study were to develop a simple method for obtain highly purified pig sperm hyaluronidase (pHyase) and to assess its activity, function, and safety. In mammals, sperm-specific glycophosphatidylinositol (GPI)-anchored Hyase assists sperm penetration through the cumulus mass surrounding the egg and aids in the dispersal of the cumulus-oocyte complex. Recently, Purified bovine sperm hyaluronidase (bHyase) has been shown to enhance therapeutic drug transport by breaking down the hyaluronan barrier to the lymphatic and capillary vessels, thereby facilitating tissue absorption. Commercially available Hyase is typically isolated from bovine or ovine; which have several disadvantages, including the risk of bovine spongiform encephalopathy, low homology with human Hyase, and the requirement for relatively complex isolation procedures. This study successfully isolated highly purified pHyase in only two steps, using ammonium sulfate precipitation and fast protein liquid chromatography. The isolated Hyase had activity equal to that of commercial bHyase, facilitated in vitro fertilization, and effectively dissolved high molecule hyaluronic acid. This simple, effective isolation method could improve the availability of pHyase for research and clinical applications.

Tumor Stroma as a Therapeutic Target for Pancreatic Ductal Adenocarcinoma

  • Dae Ui Lee;Beom Seok Han;Kyung Hee Jung;Soon-Sun Hong
    • Biomolecules & Therapeutics
    • /
    • v.32 no.3
    • /
    • pp.281-290
    • /
    • 2024
  • Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis owing to its desmoplastic stroma. Therefore, therapeutic strategies targeting this tumor stroma should be developed. In this study, we describe the heterogeneity of cancer-associated fibroblasts (CAFs) and their diverse roles in the progression, immune evasion, and resistance to treatment of PDAC. We subclassified the spatial distribution and functional activity of CAFs to highlight their effects on prognosis and drug delivery. Extracellular matrix components such as collagen and hyaluronan are described for their roles in tumor behavior and treatment outcomes, implying their potential as therapeutic targets. We also discussed the roles of extracellular matrix (ECM) including matrix metalloproteinases and tissue inhibitors in PDAC progression. Finally, we explored the role of the adaptive and innate immune systems in shaping the PDAC microenvironment and potential therapeutic strategies, with a focus on immune cell subsets, cytokines, and immunosuppressive mechanisms. These insights provide a comprehensive understanding of PDAC and pave the way for the development of prognostic markers and therapeutic interventions.

Up-regulation of Prothymosin alpha in THP-1 Cells Infected with Mycobacterium tuberculosis (결핵균 감염에 의한 THP-1 세포에서의 Prothymosin alpha 유전자 발현증가)

  • Song, Ho-Yeon;Jang, Kwang-Sik;Byoun, Hee-Sun;Lee, Shin-Je;Kim, Jin-Koo;Choe, Yong-Kyung;Ko, Kwang-Kjune
    • The Journal of the Korean Society for Microbiology
    • /
    • v.35 no.2
    • /
    • pp.149-157
    • /
    • 2000
  • Mycobacterium tuberculosis is capable of growing and survival within macrophage. The purpose of this study was to identify the genes regulated by infection of mycobacteria in human monocytic THP-1 cells. We used the differential display reverse transcriptase polymerase chain reaction (DD RT-PCR) and nothern blot analysis to confirm the differentially expressed genes from THP-1 cells infected with live Mycobacterium tuberculosis H37Rv, heat-killed Mycobacterium tuberculosis H37Rv and live Mycobacterium bovis BCG. Among many up or down-regulated clones, 27 clones were sequenced and compared with known genes on GenBank. Thirteen of over-expressed clones from THP-1 cells infected with live Mycobacterium tuberculosis H37Rv were identical to human prothymosin alpha, eight were novel clones and six clones showed homology with Human ferritin H chain, Esherichia coli bgl, Mouse RNA-dependent EIF-2 alpha kinase, E. coli htrL, Hyaluronan receptor and T cell receptor. Our result suggests that Mycobacterium tuberculosis might regulate prothymosin alpha gene transcription in monocytic THP-1 cell.

  • PDF

Skin tissue homogenate analysis for ceramide and TGF-β1 contents with TGF-β1 mRNA expressions after treatment of pomegranate concentrated solution and dried pomegranate concentrate powder in mice

  • Hu, Jin-Ryul;Choi, Beom-Rak;Park, Hye-Rim;Sung, Mi-Sun;Yi, Hae-Yeon;Kang, Su-Jin;Ku, Sae-Kwang;Lee, Young-Joon
    • The Journal of Korean Medicine
    • /
    • v.37 no.4
    • /
    • pp.1-9
    • /
    • 2016
  • Objectives: The aim of this study was to solve skin moisturizing action mechanism issues of pomegranate concentrated solution (PCS) and dried pomegranate concentrate powder (PCP), at least partially. Materials and methods: In this study, ceramide and $TGF-{\beta}1$ contents with $TGF-{\beta}1$ mRNA expressions were analysis on the skin tissue homogenate samples after 56 days of continuous oral administration of PCS 1, 2, and 4 ml/kg, and PCP 100, 200 and 400 mg/kg. Results: Noticeable and dose-dependent increases of skin $TGF-{\beta}1$ contents and mRNA expressions were demonstrated in all PCP and PCS treated mice as compared with intact vehicle control, but no significant changes on the skin ceramide contents were demonstrated in all PCP and PCS treated mice as compared with intact vehicle control, in the current study. In addition, PCP 200 mg/kg showed similar increases of the skin $TGF-{\beta}1$ contents and mRNA expressions as compared to those of PCS 4 ml/kg. Conclusions: The presented results suggested that in vivo skin moisturizing effects of PCP and PCS after oral administration through up regulation of hyaluronan synthesis demonstrated in our previous results, may be possibly mediated by modulation of $TGF-{\beta}1$ expressions at least partially, without critical influences on the skin ceramide contents.

Effect of Ferulic Acid Isolated from Cnidium Officinale on the Synthesis of Hyaluronic Acid (천궁으로부터 분리된 ferulic acid의 히알루론산 생성에 미치는 효과)

  • Song, Hye Jin;Jin, Mu Hyun;Lee, Sang Hwa
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.39 no.4
    • /
    • pp.281-288
    • /
    • 2013
  • Hyaluronic acid (HA) is one of the major extracellular matrix components in skin. The HA content is reported to decline with age, which may contribute to decrease in skin moisture, wrinkle formation and the decrease in elasticity of the skin. Among the family of HA synthase genes (HAS-1, 2, 3) identified so far, HAS-2 plays crucial roles in the regulation of HA synthesis in human skin fibroblasts. In this study, we elucidated the effects of ferulic acid isolated from Cnidium officinale on HA production. Semi-quantitative RT-PCR and quantitative real-time PCR showed that ferulic acid increased mRNA level of HAS-2 gene and ELISA assay also revealed that ferulic acid increased HA production in human skin fibroblasts. Our study suggests that ferulic acid might prevent age-dependent skin deteriorations such as wrinkles, dryness and elasticity decrease, all of which could be ascribed to the reduction of the HA content in human skin.

Biological Activities of Cosmetic Material from Ten Kinds of Flower Ethanol Extracts (화장품 소재로서의 꽃 10 종 에탄올추출물 생리활성 특성연구)

  • Lee, Tae Bum;So, Yang Kang;Kim, Se Yul;Hwang, Ji Young
    • Korean Journal of Medicinal Crop Science
    • /
    • v.28 no.4
    • /
    • pp.260-275
    • /
    • 2020
  • Background: We investigated the antioxidant, anti-wrinkles, whitening, and moisturizing properties and amounts of phenolic compounds of ethanol extracts from flowers of 10 resource plants from Namwon and Mt. Jiri., Korea. Methods and Results: We measured antioxidant efficacy based on the total polyphenol, and total flavonoid content, and the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. We evaluated the inhibitory effect on melanin synthesis and tyrosinase activity for the whitening effect. Furthermore, we analyzed the elastase and matrix metalloproteinase-1 (MMP-1) inhibition activity for anti-wrinkle capacity. To evaluate the moisturizing effect, we examined hyaluronan synthase (HAS) mRNA expression. In addition, the 19 phenolic compounds were detected using high performace liquid chromatography (HPLC). Among the 10 flowers, the antioxidant effect was high in the order of Rosa multiflora, Nelumbo nucifera, and Elsholtzia splendens. Whitening effect was high in the order of N. nucifera, R. multiflora, and Dendranthema zawadskii. As for the anti-wrinkle property, N. nucifera was the most effective followed by R. multiflora. Taraxacum coreanum was the best for moisturizing effect, followed by D. zawadskii, and E. splendens. Seven phenolic compounds were detected in the extracts of the 10 flowers. Conclusions: Overall, the extracts of five flowers extracts showed strong potential as antioxidant, whitening, anti-wrinkle, and moisturizing functional cosmetic agents.

The use of pituitary adenylate cyclase-activating polypeptide in the pre-maturation system improves in vitro developmental competence from small follicles of porcine oocytes

  • Park, Kyu-Mi;Kim, Kyu-Jun;Jin, Minghui;Han, Yongquan;So, Kyoung-Ha;Hyun, Sang-Hwan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.12
    • /
    • pp.1844-1853
    • /
    • 2019
  • Objective: We investigated how pituitary adenylate cyclase-activating polypeptide (PACAP) affects embryonic development during pre-in vitro maturation (pre-IVM) using porcine oocytes isolated from small follicles. Methods: We divided the follicles into the experimental groups by size (SF, small follicles; MF, medium follicles) and treated with and without PACAP and cultured for 18 hours (PreSF[-]PACAP; without PACAP, Pre-SF[+]PACAP; with PACAP) before undergoing IVM. The gene expression related to extracellular matrix formation (amphiregulin, epiregulin, and hyaluronan synthase 2 [HAS2]) and apoptosis (Bcl-2-associated X [BAX], B-cell lymphoma 2, and cysteine-aspartic acid protease 3) was investigated after maturation. The impact on developmental competence was assessed by the cleavage and blastocyst rate and total cell number of blastocysts in embryos generated from parthenogenesis (PA) and in vitro fertilization (IVF). Results: Cleavage rates in the Pre-SF(+)PACAP after PA were significantly higher than SF and Pre-SF(-)PACAP (p<0.05). The cleavage rates between MF and Pre- SF(+)PACAP groups yielded no notable differences after IVF. Pre-SF(+)PACAP displayed the higher rate of blastocyst formation and greater total cell number than SF and Pre-SF(-)PACAP (p<0.05). Cumulus cells showed significant upregulation of HAS2 mRNA in the Pre-SF(+)PACAP compared to the SF (p<0.05). In comparison to other groups, the Pre-SF(+)PACAP group displayed a downregulation in mRNA expression of BAX in matured oocytes (p<0.05). Conclusion: The PACAP treatment during pre-IVM improved the developmental potential of porcine oocytes derived from SF by regulating cumulus expansion and apoptosis of oocytes.