Browse > Article
http://dx.doi.org/10.4062/biomolther.2021.040

AR-mTOR-SRF Axis Regulates HMMR Expression in Human Prostate Cancer Cells  

Sun, You (Department of Herbal Resources, Professional Graduate School of Oriental Medicine, Wonkwang University)
Li, Zewu (Department of Herbal Resources, Professional Graduate School of Oriental Medicine, Wonkwang University)
Song, Kyung (Department of Herbal Resources, Professional Graduate School of Oriental Medicine, Wonkwang University)
Publication Information
Biomolecules & Therapeutics / v.29, no.6, 2021 , pp. 667-677 More about this Journal
Abstract
The elevated expression of the hyaluronan-mediated motility receptor (HMMR) is known to be highly associated with tumor progression in prostate cancer, but the molecular mechanisms underlying the regulation of HMMR expression remain unclear. Here, we report that mammalian target of rapamycin (mTOR) is a key regulator of HMMR expression, for which its kinase activity is required. Pharmacological inhibitors of mTOR, such as rapamycin and Torin2, markedly suppressed the mRNA level as well as the protein level of HMMR in LNCaP and PC-3 cells. Our data demonstrate that such regulation occurs at the transcription level. HMMR promoter reporter assays revealed that the transcription factor SRF is responsible for the mTOR-mediated transcriptional regulation of HMMR gene. Consistently, the suppression of HMMR expression by Torin2 was noticeably reversed by the overexpression of SRF. Moreover, our findings suggest that the SRF binding sites responsible for the transcriptional regulation of HMMR through the mTOR-SRF axis are located in HMMR promoter sequences carrying the first intron, downstream of the translational start site. Furthermore, the upregulation of HMMR by DHT was abolished by stimulation with rapamycin, prior to DHT treatment, suggesting that mTOR activity is required for the induction of HMMR expression by androgen. Collectively, our study provides new mechanistic insights into the role of mTOR/SRF/AR signaling in HMMR regulation in prostate cancer cells.
Keywords
HMMR; SRF; mTOR; Transcriptional regulation; Androgen receptor; Prostate cancer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Taplin, M. E. and Balk, S. P. (2004) Androgen receptor: a key molecule in the progression of prostate cancer to hormone independence. J. Cell. Biochem. 91, 483-490.   DOI
2 Thangavel, C., Boopathi, E., Liu, Y., Haber, A., Ertel, A., Bhardwaj, A., Addya, S., Williams, N., Ciment, S. J., Cotzia, P., Dean, J. L., Snook, A., McNair, C., Price, M., Hernandez, J. R., Zhao, S. G., Birbe, R., McCarthy, J. B., Turley, E. A., Pienta, K. J., Feng, F. Y., Dicker, A. P., Knudsen, K. E. and Den, R. B. (2017) RB loss promotes prostate cancer metastasis. Cancer Res. 77, 982-995.   DOI
3 Turley, E. A., Noble, P. W. and Bourguignon, L. Y. (2002) Signaling properties of hyaluronan receptors. J. Biol. Chem. 277, 4589-4592.   DOI
4 Benitez, A., Yates, T. J., Lopez, L. E., Cerwinka, W. H., Bakkar, A. and Lokeshwar, V. B. (2011) Targeting hyaluronidase for cancer therapy: antitumor activity of sulfated hyaluronic acid in prostate cancer cells. Cancer Res. 71, 4085-4095.   DOI
5 Augustin, F., Fiegl, M., Schmid, T., Pomme, G., Sterlacci, W. and Tzankov, A. (2015) Receptor for hyaluronic acid-mediated motility (RHAMM, CD168) expression is prognostically important in both nodal negative and nodal positive large cell lung cancer. J. Clin. Pathol. 68, 368-373.   DOI
6 Wang, K. and Zhang, T. (2016) Prognostic significance of CD168 overexpression in colorectal cancer. Oncol. Lett. 12, 2555-2559.   DOI
7 Wang, Z., Wu, Y., Wang, H., Zhang, Y., Mei, L., Fang, X., Zhang, X., Zhang, F., Chen, H., Liu, Y., Jiang, Y., Sun, S., Zheng, Y., Li, N. and Huang, L. (2014) Interplay of mevalonate and Hippo pathways regulates RHAMM transcription via YAP to modulate breast cancer cell motility. Proc. Natl. Acad. Sci. U.S.A. 111, E89-E98.
8 Aryal, P., Kim, K., Park, P. H., Ham, S., Cho, J. and Song, K. (2014) Baicalein induces autophagic cell death through AMPK/ULK1 activation and downregulation of mTORC1 complex components in human cancer cells. FEBS J. 281, 4644-4658.   DOI
9 Assmann, V., Gillett, C. E., Poulsom, R., Ryder, K., Hart, I. R. and Hanby, A. M. (2001) The pattern of expression of the microtubule-binding protein RHAMM/IHABP in mammary carcinoma suggests a role in the invasive behaviour of tumour cells. J. Pathol. 195, 191-196.   DOI
10 Assmann, V., Jenkinson, D., Marshall, J. F. and Hart, I. R. (1999) The intracellular hyaluronan receptor RHAMM/IHABP interacts with microtubules and actin filaments. J. Cell Sci. 112, 3943-3954.   DOI
11 Chen, Y. and Zhou, X. (2020) Research progress of mTOR inhibitors. Eur. J. Med. Chem. 208, 112820.   DOI
12 Fu, W. and Hall, M. N. (2020) Regulation of mTORC2 signaling. Genes 11, 1045.   DOI
13 Zhang, J., Wu, D., He, Y., Li, L., Lu, J. Z., Gui, H., Wang, Y., Tao, Y., Wang, H.Z., Kaushik, D., Rodriguez, R. and Wang, Z. (2020) Rapamycin inhibits AR signaling pathway in prostate cancer by interacting with the FK1 domain of FKBP51. Biochem. Biophys. Rep. 23, 100778.
14 Watson, P. A., Arora, V. K. and Sawyers, C. L. (2015) Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat. Rev. Cancer 15, 701-711.   DOI
15 Zlobec, I., Baker, K., Terracciano, L. M. and Lugli, A. (2008) RHAMM, p21 combined phenotype identifies microsatellite instability-high colorectal cancers with a highly adverse prognosis. Clin. Cancer Res. 14, 3798-3806.   DOI
16 Xu, Y., Chen, S. Y., Ross, K. N. and Balk, S. P. (2006) Androgens induce prostate cancer cell proliferation through mammalian target of rapamycin activation and post-transcriptional increases in cyclin D proteins. Cancer Res. 66, 7783-7792.   DOI
17 Gust, K. M., Hofer, M. D., Perner, S. R., Kim, R., Chinnaiyan, A. M., Varambally, S., Moller, P., Rinnab, L., Rubin, M. A., Greiner, J., Schmitt, M., Kuefer, R. and Ringhoffer, M. (2009) RHAMM (CD168) is overexpressed at the protein level and may constitute an immunogenic antigen in advanced prostate cancer disease. Neoplasia 11, 956-963.   DOI
18 Hatano, H., Shigeishi, H., Kudo, Y., Higashikawa, K., Tobiume, K., Takata, T. and Kamata, N. (2011) RHAMM/ERK interaction induces proliferative activities of cementifying fibroma cells through a mechanism based on the CD44-EGFR. Lab. Invest. 91, 379-391.   DOI
19 Maxwell, C. A., Keats, J. J., Crainie, M., Sun, X., Yen, T., Shibuya, E., Hendzel, M., Chan, G. and Pilarski, L. M. (2003) RHAMM is a centrosomal protein that interacts with dynein and maintains spindle pole stability. Mol. Biol.Cell 14, 2262-2276.   DOI
20 Zhang, H., Berel, D., Wang, Y., Li, P., Bhowmick, N. A., Figlin, R. A. and Kim, H. L. (2013) A comparison of Ku0063794, a dual mTORC1 and mTORC2 inhibitor, and temsirolimus in preclinical renal cell carcinoma models. PLoS ONE 8, e54918.   DOI
21 Rahman, M., Miyamoto, H. and Chang, C. (2004) Androgen receptor coregulators in prostate cancer: mechanisms and clinical implications. Clin. Cancer Res. 10, 2208-2219.   DOI
22 Lin, S. L., Chang, D. and Ying, S. Y. (2007) Hyaluronan stimulates transformation of androgen-independent prostate cancer. Carcinogenesis 28, 310-320.   DOI
23 Korkes, F., de Castro, M. G., de Cassio Zequi, S., Nardi, L., Del Giglio, A. and de Lima Pompeo, A. C. (2014) Hyaluronan-mediated motility receptor (RHAMM) immunohistochemical expression and androgen deprivation in normal peritumoral, hyperplasic and neoplastic prostate tissue. BJU Int. 113, 822-829.   DOI
24 Kouvidi, K., Berdiaki, A., Nikitovic, D., Katonis, P., Afratis, N., Hascall, V. C., Karamanos, N. K. and Tzanakakis, G. N. (2011) Role of receptor for hyaluronic acid-mediated motility (RHAMM) in low molecular weight hyaluronan (LMWHA)-mediated fibrosarcoma cell adhesion. J. Biol. Chem. 286, 38509-38520.   DOI
25 Lin, S. L., Chang, D., Chiang, A. and Ying, S. Y. (2008) Androgen receptor regulates CD168 expression and signaling in prostate cancer. Carcinogenesis 29, 282-290.   DOI
26 Liu, Q., Wang, J., Kang, S. A., Thoreen, C. C., Hur, W., Ahmed, T., Sabatini, D. M. and Gray, N. S. (2011) Discovery of 9-(6-aminopyridin3-yl)-1-(3-(trifluoromethyl)phenyl)benzo[h][1,6]naphthyridin-2(1H)-one (Torin2) as a potent, selective, and orally available mammalian target of rapamycin (mTOR) inhibitor for treatment of cancer. J. Med. Chem. 54, 1473-1480.   DOI
27 Lokeshwar, V. B., Lopez, L. E., Munoz, D., Chi, A., Shirodkar, S. P., Lokeshwar, S. D., Escudero, D. O., Dhir, N. and Altman, N. (2010) Antitumor activity of hyaluronic acid synthesis inhibitor 4-methylumbelliferone in prostate cancer cells. Cancer Res. 70, 2613-2623.   DOI
28 Maxwell, C. A., McCarthy, J. and Turley, E. (2008) Cell-surface and mitotic-spindle RHAMM: moonlighting or dual oncogenic functions? J. Cell Sci. 121, 925-932.   DOI
29 Meier, C., Spitschak, A., Abshagen, K., Gupta, S., Mor, J. M., Wolkenhauer, O., Haier, J., Vollmar, B., Alla, V. and Putzer, B. M. (2014) Association of RHAMM with E2F1 promotes tumour cell extravasation by transcriptional up-regulation of fibronectin. J. Pathol. 234, 351-364.   DOI
30 Poser, S., Impey, S., Trinh, K., Xia, Z. and Storm, D. R. (2000) SRF-dependent gene expression is required for PI3-kinase-regulated cell proliferation. EMBO J. 19, 4955-4966.   DOI
31 Rizzardi, A. E., Vogel, R. I., Koopmeiners, J. S., Forster, C. L., Marston, L. O., Rosener, N. K., Akentieva, N., Price, M. A., Metzger, G. J., Warlick, C. A., Henriksen, J. C., Turley, E. A., McCarthy, J. B. and Schmechel, S. C. (2014) Elevated hyaluronan and hyaluronan-mediated motility receptor are associated with biochemical failure in patients with intermediate-grade prostate tumors. Cancer 120, 1800-1809.   DOI
32 Saxton, R. A. and Sabatini, D. M. (2017a) mTOR signaling in growth, metabolism, and disease. Cell 168, 960-976.   DOI
33 Kirby, M., Hirst, C. and Crawford, E. D. (2011) Characterising the castration-resistant prostate cancer population: a systematic review. Int. J. Clin. Pract. 65, 1180-1192.   DOI
34 Pujana, M. A., Han, J. D., Starita, L. M., Stevens, K. N., Tewari, M., Ahn, J. S., Rennert, G., Moreno, V., Kirchhoff, T., Gold, B., Assmann, V., Elshamy, W. M., Rual, J. F., Levine, D., Rozek, L. S., Gelman, R. S., Gunsalus, K. C., Greenberg, R. A., Sobhian, B., Bertin, N., Venkatesan, K., Ayivi-Guedehoussou, N., Sole, X., Hernandez, P., Lazaro, C., Nathanson, K. L., Weber, B. L., Cusick, M. E., Hill, D. E., Offit, K., Livingston, D. M., Gruber, S. B., Parvin, J. D. and Vidal, M. (2007) Network modeling links breast cancer susceptibility and centrosome dysfunction. Nat. Genet. 39, 1338-1349.   DOI
35 Saxton, R. A. and Sabatini, D. M. (2017b) mTOR signaling in growth, metabolism, and disease. Cell 169, 361-371 [Erratum].   DOI
36 Sohr, S. and Engeland, K. (2008) RHAMM is differentially expressed in the cell cycle and downregulated by the tumor suppressor p53. Cell Cycle 7, 3448-3460.   DOI
37 Maxwell, C. A., Benitez, J., Gomez-Baldo, L., Osorio, A., Bonifaci, N., Fernandez-Ramires, R., Costes, S. V., Guino, E., Chen, H., Evans, G. J., Mohan, P., Catala, I., Petit, A., Aguilar, H., Villanueva, A., Aytes, A., Serra-Musach, J., Rennert, G., Lejbkowicz, F., Peterlongo, P., Manoukian, S., Peissel, B., Ripamonti, C. B., Bonanni, B., Viel, A., Allavena, A., Bernard, L., Radice, P., Friedman, E., Kaufman, B., Laitman, Y., Dubrovsky, M., Milgrom, R., Jakubowska, A., Cybulski, C., Gorski, B., Jaworska, K., Durda, K., Sukiennicki, G., Lubinski, J., Shugart, Y. Y., Domchek, S. M., Letrero, R., Weber, B. L., Hogervorst, F. B., Rookus, M. A., Collee, J. M., Devilee, P., Ligtenberg, M. J., Luijt, R. B., Aalfs, C. M., Waisfisz, Q., Wijnen, J., Roozendaal, C. E., HEBON, EMBRACE, Easton, D. F., Peock, S., Cook, M., Oliver, C., Frost, D., Harrington, P., Evans, D. G., Lalloo, F., Eeles, R., Izatt, L., Chu, C., Eccles, D., Douglas, F., Brewer, C., Nevanlinna, H., Heikkinen, T., Couch, F. J., Lindor, N. M., Wang, X., Godwin, A. K., Caligo, M. A., Lombardi, G., Loman, N., Karlsson, P., Ehrencrona, H., von Wachenfeldt, A., SWE-BRCA, Barkardottir, R. B., Hamann, U., Rashid, M. U., Lasa, A., Caldes, T., Andres, R., Schmitt, M., Assmann, V., Stevens, K., Offit, K., Curado, J., Tilgner, H., Guigo, R., Aiza, G., Brunet, J., Castellsague, J., Martrat, G., Urruticoechea, A., Blanco, I., Tihomirova, L., Goldgar, D. E., Buys, S., John, E. M., Miron, A., Southey, M., Daly, M. B., BCFR, Schmutzler, R. K., Wappenschmidt, B., Meindl, A., Arnold, N., Deissler, H., Varon-Mateeva, R., Sutter, C., Niederacher, D., Imyamitov, E., Sinilnikova, O. M., Stoppa-Lyonne, D., Mazoyer, S., Verny-Pierre, C., Castera, L., de Pauw, A., Bignon, Y. J., Uhrhammer, N., Peyrat, J. P., Vennin, P., Fert Ferrer, S., Collonge-Rame, M. A., Mortemousque, I., GEMO Study Collaborators, Spurdle, A. B., Beesley, J., Chen, X., Healey, S., kConFab, Barcellos-Hoff, M. H., Vidal, M., Gruber, S. B., Lazaro, C., Capella, G., McGuffog, L., Nathanson, K. L., Antoniou, A. C., Chenevix-Trench, G., Fleisch, M. C., Moreno, V. and Pujana, M. A. (2011) Interplay between BRCA1 and RHAMM regulates epithelial apicobasal polarization and may influence risk of breast cancer. PLoS Biol. 9, e1001199.   DOI
38 Wang, F., Meng, M., Mo, B., Yang, Y., Ji, Y., Huang, P., Lai, W., Pan, X., You, T., Luo, H., Guan, X., Deng, Y., Yuan, S., Chu, J., Namaka, M., Hughes, T., Ye, L., Yu, J., Li, X. and Deng, Y. (2018) Crosstalks between mTORC1 and mTORC2 variagate cytokine signaling to control NK maturation and effector function. Nat. Commun. 9, 4874.   DOI
39 Chang, K. H., Li, R., Papari-Zareei, M., Watumull, L., Zhao, Y. D., Auchus, R. J. and Sharifi, N. (2011) Dihydrotestosterone synthesis bypasses testosterone to drive castration-resistant prostate cancer. Proc. Natl. Acad. Sci. U.S.A. 108, 13728-13733.   DOI
40 Joukov, V., Groen, A. C., Prokhorova, T., Gerson, R., White, E., Rodriguez, A., Walter, J. C. and Livingston, D. M. (2006) The BRCA1/BARD1 heterodimer modulates ran-dependent mitotic spindle assembly. Cell 127, 539-552.   DOI
41 Koelzer, V. H., Huber, B., Mele, V., Iezzi, G., Trippel, M., Karamitopoulou, E., Zlobec, I. and Lugli, A. (2015) Expression of the hyaluronanmediated motility receptor RHAMM in tumor budding cells identifies aggressive colorectal cancers. Hum. Pathol. 46, 1573-1581.   DOI
42 Tafur, L., Kefauver, J. and Loewith, R. (2020) Structural insights into TOR signaling. Genes 11, 885.   DOI
43 Song, J. M., Im, J., Nho, R. S., Han, Y. H., Upadhyaya, P. and Kassie, F. (2019) Hyaluronan-CD44/RHAMM interaction-dependent cell proliferation and survival in lung cancer cells. Mol. Carcinog. 58, 321-333.   DOI
44 Sun, Y., Jiang, M., Park, P. H. and Song, K. (2020) Transcriptional suppression of androgen receptor by 18beta-glycyrrhetinic acid in LN-CaP human prostate cancer cells. Arch. Pharm. Res. 43, 433-448.   DOI