• 제목/요약/키워드: human-type N-linked glycan

검색결과 5건 처리시간 0.019초

Biochemical Characterization of a Glycosyltransferase Homolog from an Oral Pathogen Fusobacterium nucleatum as a Human Glycan-Modifying Enzyme

  • Kim, Seong-Hun;Oh, Doo-Byoung;Kwon, Oh-Suk;Jung, Jae-Kap;Lee, Yun-Mi;Ko, Ki-Sung;Ko, Jeong-Heon;Kang, Hyun-Ah
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권5호
    • /
    • pp.859-865
    • /
    • 2008
  • Bacterial glycosyltransferases have drawn growing attention as economical enzymes for oligosaccharide synthesis, with their easy expression and relatively broad substrate specificity. Here, we characterized a glycosyltransferase homolog (Fnu_GT) from a human oral pathogen, Fusobacterium nucleatum. Bioinformatic analysis showed that Fnu_GT belongs to the glycosyltransferases family II. The recombinant Fnu_GT (rFnu_GT) expressed in Escherichia coli displayed the highest glycosylation activity when UDP-galactose (Gal) was used as a donor nucleotide-sugar with heptose or N-acetylglucosamine (GlcNAc) as an acceptor sugar. Interestingly, rFnu_GT transferred the galactose moiety of UDP-Gal to a nonreducing terminal GlcNAc attached to the trimannosyl core glycan, indicating its potential as an enzyme for human-type N-glycan synthesis.

Comparative N-Linked Glycan Analysis of Wild-Type and α1,3-Galactosyltransferase Gene Knock-Out Pig Fibroblasts Using Mass Spectrometry Approaches

  • Park, Hae-Min;Kim, Yoon-Woo;Kim, Kyoung-Jin;Kim, Young June;Yang, Yung-Hun;Jin, Jang Mi;Kim, Young Hwan;Kim, Byung-Gee;Shim, Hosup;Kim, Yun-Gon
    • Molecules and Cells
    • /
    • 제38권1호
    • /
    • pp.65-74
    • /
    • 2015
  • Carbohydrate antigens expressed on pig cells are considered to be major barriers in pig-to-human xenotransplantation. Even after ${\alpha}1,3$-galactosyltransferase gene knock-out (GalT-KO) pigs are generated, potential non-Gal antigens are still existed. However, to the best of our knowledge there is no extensive study analyzing N-glycans expressed on the GalT-KO pig tissues or cells. Here, we identified and quantified totally 47 N-glycans from wild-type (WT) and GalT-KO pig fibroblasts using mass spectrometry. First, our results confirmed the absence of galactose-alpha-1,3-galactose (${\alpha}$-Gal) residue in the GalT-KO pig cells. Interestingly, we showed that the level of overall fucosylated N-glycans from GalT-KO pig fibroblasts is much higher than from WT pig fibroblasts. Moreover, the relative quantity of the N-glycolylneuraminic acid (NeuGc) antigen is slightly higher in the GalT-KO pigs. Thus, this study will contribute to a better understanding of cellular glycan alterations on GalT-KO pigs for successful xenotransplantation.

Functional Characterization and Application of the HpOCH2 Gene, Encoding an Initiating $\alpha$l,6-Mannosyltransferase, for N-glycan Engineering in the Methylotrophic Yeast Hansenula polymorpha

  • Kim, Moo-Woong;Kim, Eun-Jung;Kim, Jeong-Yoon;Rhee, Sang-Ki;Kang, Hyun-Ah
    • 한국미생물생명공학회:학술대회논문집
    • /
    • 한국미생물생명공학회 2004년도 Annual Meeting BioExibition International Symposium
    • /
    • pp.278-281
    • /
    • 2004
  • The $\alpha$1,6-mannosyltransferase encoded by Saccharomyces cerevisiae OCH1 plays a key role for the outer chain initiation of the N-linked oligosaccharides. A search for Hansenula polymorpha genes homologous to S. cerevisiae OCHI (ScOCH1) has revealed seven open reading frames (ORF100, ORF142, ORF168, ORF288, ORF379, ORF576, ORF580). All of the seven ORFs are predicted to be a type II integral membrane protein containing a transmembrane domain near the amino-terminal region and has a DXD motif, which has been found in the active site of many glycosyltransferases. Among this seven-membered OCH1 gene family of H. polymorpha, we have carried out a functional analysis of H. polymorpha ORF168 (HpOCH2) showing the highest identity to ScOCH1. Inactivation of this protein by disruption of corresponding gene resulted in several phenotypes suggestive of cell wall defects, including hypersensitivity to hygromycin B and sodium deoxycholate. The structural analysis of N-glycans synthesized in HpOCH2-disrupted strain (Hpoch2Δ) and the in vitro $\alpha$1,6-mannosyltransferase activity assay strongly indicate that HpOch2p is a key enzyme adding the first $\alpha$1,6-mannose residue on the core glycan Man$_{8}$GlcNAc$_2$. The Hpoch2Δ was further genetically engineered to synthesize a recombinant glycoprotein with the human compatible N-linked oligosaccharide, Man$_{5}$GlcNAc$_2$, by overexpression of the Aspergillus saitoi $\alpha$1,2-mannosidase with the 'HDEL” ER retention signal.gnal.

  • PDF

다중 질량 분석법을 이용한 인체 면역글로불린 G의 N-연결 글라이칸 분석 (Tandem Mass Spectrometry of N-linked Glycans from Human Immunoglobulin G)

  • 주황수;김윤곤;장경순;김병기
    • KSBB Journal
    • /
    • 제22권4호
    • /
    • pp.234-238
    • /
    • 2007
  • 본 연구에서는 전극분무 이온화-이온 포획 질량 분석기를 이용하여 인체 IgG의 N-연결 글라이칸 중 이중촉각 구조를 가지면서 비환원 말단의 갈락토오즈 개수가 0, 1, 2 개인 서로 다른 세 가지 글라이칸의 단일 쪼개짐 (MS/MS) 및 다중 쪼개짐 현상을 관찰하고 이를 구조 분석에 이용하였다. MS/MS 분석에서는 퓨코오즈가 결합된 환원 말단의 N-아세틸 글루코사민의 0,2-고리 쪼개짐으로 파생되는 조각 피크가 가장 높은 세기로 나타나는 것을 관찰할 수 있었고, 전구체 피크와 별개로 연속적인 당 단위체의 쪼개짐이 일어나는 것을 알 수 있었다. 또한 G1 글라이칸의 경우에서만 비환원 말단의 갈락토오즈와 N-아세틸글루코사민이 결합된 채 쪼개지는 현상이 일어나는 것을 관찰할 수 있었다. 다중 쪼개짐 질량 분석 기법을 이용하여 MS/MS 스펙트럼에서 나타나는 조각 피크들의 구조를 재확인할 수 있었고, 이를 트리 구조로 정리할 수 있었다. 또한 추가적인 2,4-고리 쪼개짐 현상이 환원 말단 하나 바깥쪽의 N-아세틸 글루코사민에서 공통적으로 일어나는 것을 관찰할 수 있었다. 이와 같은 다중 쪼개짐 질량 분석기법을 이용하여 보다 복잡한 구조의 글라이칸 구조 분석에 이용될 수 있을 것으로 기대된다.

Expression and Characterization of Human N-Acetylglucosaminyltransferases and ${\alpha}$2,3-Sialyltransferase in Insect Cells for In Vitro Glycosylation of Recombinant Erythropoietin

  • Kim, Na-Young;Kim, Hyung-Gu;Kim, Yang-Hyun;Chung, In-Sik;Yang, Jai-Myung
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권2호
    • /
    • pp.383-391
    • /
    • 2008
  • The glycans linked to the insect cell-derived glycoproteins are known to differ from those expressed in mammalian cells, partly because of the low level or lack of glycosyltransferase activities. GnT II, GnT IV, GnT V, and ST3Gal IV, which play important roles in the synthesis of tetraantennarytype complex glycan structures in mammalian cells, were overexpressed in Trichoplusia ni cells by using a baculovirus expression vector. The glycosyltransferases, expressed as a fusion form with the IgG-binding domain, were secreted into the culture media and purified using IgG sepharose resin. The enzyme assay, performed using a pyridylaminated-sugar chain as an acceptor, indicated that the purified glycosyltransferases retained their enzyme activities. Human erythropoietin expressed in T. ni cells (rhEPO) was subjected to in vitro glycosylation by using recombinant glycosyltransferases and was converted into complex-type glycan with terminal sialic acid. The presence of Nacetylglucosamine, galactose, and sialic acid on the rhEPO moiety was detected by a lectin blot analysis, and the addition of galactose and sialic acid to rhEPO was confirmed by autoradiography using $UDP-^{14}C-Gal\;and\;CMP-^{14}C-Sia$ as donors. The in vitro glycosylated rhEPO was injected into mice, and the number of reticulocytes among the ed blood cells was counted using FACS. A significant increase in the number of reticulocytes was not observed in the mice injected with in vitro glycosylated rhEPO as compared with those injected with rhEPO.