Browse > Article
http://dx.doi.org/10.14348/molcells.2015.2240

Comparative N-Linked Glycan Analysis of Wild-Type and α1,3-Galactosyltransferase Gene Knock-Out Pig Fibroblasts Using Mass Spectrometry Approaches  

Park, Hae-Min (School of Chemical and Biological Engineering, Seoul National University)
Kim, Yoon-Woo (Department of Chemical Engineering, Soongsil University)
Kim, Kyoung-Jin (Department of Chemical Engineering, Soongsil University)
Kim, Young June (Department of Nanobiomedical Science and BK21+ NBM Global Research Center for Regenerative Medicine, Dankook University)
Yang, Yung-Hun (Department of Microbial Engineering, College of Engineering, Konkuk University)
Jin, Jang Mi (Division of Mass Spectrometry Research, Korea Basic Science Institute)
Kim, Young Hwan (Division of Mass Spectrometry Research, Korea Basic Science Institute)
Kim, Byung-Gee (School of Chemical and Biological Engineering, Seoul National University)
Shim, Hosup (Department of Nanobiomedical Science and BK21+ NBM Global Research Center for Regenerative Medicine, Dankook University)
Kim, Yun-Gon (Department of Chemical Engineering, Soongsil University)
Abstract
Carbohydrate antigens expressed on pig cells are considered to be major barriers in pig-to-human xenotransplantation. Even after ${\alpha}1,3$-galactosyltransferase gene knock-out (GalT-KO) pigs are generated, potential non-Gal antigens are still existed. However, to the best of our knowledge there is no extensive study analyzing N-glycans expressed on the GalT-KO pig tissues or cells. Here, we identified and quantified totally 47 N-glycans from wild-type (WT) and GalT-KO pig fibroblasts using mass spectrometry. First, our results confirmed the absence of galactose-alpha-1,3-galactose (${\alpha}$-Gal) residue in the GalT-KO pig cells. Interestingly, we showed that the level of overall fucosylated N-glycans from GalT-KO pig fibroblasts is much higher than from WT pig fibroblasts. Moreover, the relative quantity of the N-glycolylneuraminic acid (NeuGc) antigen is slightly higher in the GalT-KO pigs. Thus, this study will contribute to a better understanding of cellular glycan alterations on GalT-KO pigs for successful xenotransplantation.
Keywords
GalT-KO pig fibroblast; mass spectrometry (MS); N-glycan; N-glycolylneuraminic acid (NeuGc);
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Ahn, Y., Kang, U.B., Kim, J., and Lee, C. (2010). Mining of serum glycoproteins by an indirect approach using cell line secretome. Mol. Cells 29, 123-130.   DOI   ScienceOn
2 Ahn, K.S., Kim, Y.J., Kim, M., Lee, B.H., Heo, S.Y., Kang, M.J., Kang, Y.K., Lee, J.W., Lee, K.K., Kim, J.H., et al. (2011). Resurrection of an alpha-1,3-galactosyltransferase gene-targeted miniature pig by recloning using postmortem ear skin fibroblasts. Theriogenology 75, 933-939.   DOI   ScienceOn
3 Baumann, B.C., Stussi, G., Huggel, K., Rieben, R., and Seebach, J.D. (2007). Reactivity of human natural antibodies to endothelial cells from Galalpha(1,3)Gal-deficient pigs. Transplantation 83, 193-201.   DOI   ScienceOn
4 Burlak, C., Bern, M., Brito, A.E., Isailovic, D., Wang, Z.Y., Estrada, J.L., Li, P., and Tector, A.J. (2013). N-linked glycan profiling of GGTA1/CMAH knockout pigs identifies new potential carbohydrate xenoantigens. Xenotransplantation 20, 277-291.   DOI   ScienceOn
5 Crocker, P.R., and Feizi, T. (1996). Carbohydrate recognition systems: functional triads in cell-cell interactions. Curr. Opin. Struct. Biol. 6, 679-691.   DOI   ScienceOn
6 Dai, Y., Vaught, T.D., Boone, J., Chen, S.H., Phelps, C.J., Ball, S., Monahan, J.A., Jobst, P.M., McCreath, K.J., Lamborn, A.E., et al. (2002). Targeted disruption of the alpha1,3-galactosyltransferase gene in cloned pigs. Nat. Biotechnol. 20, 251-255.   DOI   ScienceOn
7 Diswall, M., Angstrom, J., Karlsson, H., Phelps, C.J., Ayares, D., Teneberg, S., and Breimer, M.E. (2010). Structural characterization of alpha1,3-galactosyltransferase knockout pig heart and kidney glycolipids and their reactivity with human and baboon antibodies. Xenotransplantation 17, 48-60.   DOI   ScienceOn
8 Dube, D.H., and Bertozzi, C.R. (2005). Glycans in cancer and inflammation-- potential for therapeutics and diagnostics. Nat. Rev. Drug Discov. 4, 477-488.   DOI   ScienceOn
9 Fujimura, T., Takahagi, Y., Shigehisa, T., Nagashima, H., Miyagawa, S., Shirakura, R., and Murakami, H. (2008). Production of alpha 1,3-galactosyltransferase gene-deficient pigs by somatic cell nuclear transfer: a novel selection method for gal alpha 1,3-Gal antigen- deficient cells. Mol. Rep. Dev. 75, 1372-1378.   DOI   ScienceOn
10 Gil, G.C., Kim, Y.G., and Kim, B.G. (2008). A relative and absolute quantification of neutral N-linked oligosaccharides using modification with carboxymethyl trimethylammonium hydrazide and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal. Biochem. 379, 45-59.   DOI   ScienceOn
11 Kang, P., Mechref, Y., Klouckova, I., and Novotny, M.V. (2005). Solid-phase permethylation of glycans for mass spectrometric analysis. Rapid Commun. Mass Spectrom. 19, 3421-3428.   DOI   ScienceOn
12 Gil, G.C., Iliff, B., Cerny, R., Velander, W.H., and Van Cott, K.E. (2010). High throughput quantification of N-glycans using onepot sialic acid modification and matrix assisted laser desorption ionization time-of-flight mass spectrometry. Anal. Chem. 82, 6613-6620.   DOI   ScienceOn
13 Haslam, S.M., North, S.J., and Dell, A. (2006). Mass spectrometric analysis of N- and O-glycosylation of tissues and cells. Curr. Opin. Struct. Biol. 16, 584-591.   DOI   ScienceOn
14 Jang, K.S., Kim, Y.G., Gil, G.C., Park, S.H., and Kim, B.G. (2009). Mass spectrometric quantification of neutral and sialylated Nglycans from a recombinant therapeutic glycoprotein produced in the two Chinese hamster ovary cell lines. Anal. Biochem. 386, 228-236.   DOI   ScienceOn
15 Kang, P., Mechref, Y., and Novotny, M.V. (2008). High-throughput solid-phase permethylation of glycans prior to mass spectrometry. Rapid Commun. Mass Spectrom. 22, 721-734.   DOI   ScienceOn
16 Kim, Y.G., Kim, S.Y., Hur, Y.M., Joo, H.S., Chung, J., Lee, D.S., Royle, L., Rudd, P.M., Dwek, R.A., Harvey, D.J., et al. (2006). The identification and characterization of xenoantigenic nonhuman carbohydrate sequences in membrane proteins from porcine kidney. Proteomics 6, 1133-1142.   DOI   ScienceOn
17 Kim, Y.G., Gil, G.C., Harvey, D.J., and Kim, B.G. (2008). Structural analysis of alpha-Gal and new non-Gal carbohydrate epitopes from specific pathogen-free miniature pig kidney. Proteomics 8, 2596-2610.   DOI   ScienceOn
18 Kolber-Simonds, D., Lai, L., Watt, S.R., Denaro, M., Arn, S., Augenstein, M.L., Betthauser, J., Carter, D.B., Greenstein, J.L., Hao, Y., et al. (2004). Production of alpha-1,3-galactosyltransferase null pigs by means of nuclear transfer with fibroblasts bearing loss of heterozygosity mutations. Proc. Natl. Acad. Sci. USA 101, 7335-7340.   DOI   ScienceOn
19 Kim, Y.G., Gil, G.C., Jang, K.S., Lee, S., Kim, H.I., Kim, J.S., Chung, J., Park, C.G., Harvey, D.J., and Kim, B.G. (2009a). Qualitative and quantitative comparison of N-glycans between pig endothelial and islet cells by high-performance liquid chromatography and mass spectrometry-based strategy. J. Mass Spectrom. 44, 1087-1104.   DOI   ScienceOn
20 Kim, Y.G., Oh, J.Y., Gil, G.C., Kim, M.K., Ko, J.H., Lee, S., Lee, H.J., Wee, W.R., and Kim, B.G. (2009b). Identification of alpha-Gal and non-Gal epitopes in pig corneal endothelial cells and keratocytes by using mass spectrometry. Curr. Eye Res. 34, 877-895.   DOI   ScienceOn
21 Lai, L., Kolber-Simonds, D., Park, K.W., Cheong, H.T., Greenstein, J.L., Im, G.S., Samuel, M., Bonk, A., Rieke, A., Day, B.N., et al. (2002). Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science 295, 1089-1092.   DOI   ScienceOn
22 Lutz, A.J., Li, P., Estrada, J.L., Sidner, R.A., Chihara, R.K., Downey, S.M., Burlak, C., Wang, Z.Y., Reyes, L.M., Ivary, B., et al. (2013). Double knockout pigs deficient in N-glycolylneuraminic acid and galactose alpha-1,3-galactose reduce the humoral barrier to xenotransplantation. Xenotransplantation 20, 27-35.   DOI   ScienceOn
23 Marth, J.D., and Grewal, P.K. (2008). Mammalian glycosylation in immunity. Nat. Rev. Immunol. 8, 874-887.   DOI   ScienceOn
24 North, S.J., Hitchen, P.G., Haslam, S.M., and Dell, A. (2009). Mass spectrometry in the analysis of N-linked and O-linked glycans. Curr. Opin. Struct. Biol. 19, 498-506.   DOI   ScienceOn
25 Miyagawa, S., Takeishi, S., Yamamoto, A., Ikeda, K., Matsunari, H., Yamada, M., Okabe, M., Miyoshi, E., Fukuzawa, M., and Nagashima, H. (2010). Survey of glycoantigens in cells from alpha1- 3galactosyltransferase knockout pig using a lectin microarray. Xenotransplantation 17, 61-70.   DOI   ScienceOn
26 Miyagawa, S., Maeda, A., Takeishi, S., Ueno, T., Usui, N., Matsumoto, S., Okitsu, T., Goto, M., and Nagashima, H.A (2013). lectin array analysis for wild-type and alpha-Gal-knockout pig islets versus healthy human islets. Surg. Today 43, 1439-1447.   DOI
27 Morozumi, K., Kobayashi, T., Usami, T., Oikawa, T., Ohtsuka, Y., Kato, M., Takeuchi, O., Koyama, K., Matsuda, H., Yokoyama, I., et al. (1999). Significance of histochemical expression of Hanganutziu-Deicher antigens in pig, baboon and human tissues. Transplant Proc. 31, 942-944.   DOI   ScienceOn
28 Ohtsubo, K., and Marth, J.D. (2006). Glycosylation in cellular mechanisms of health and disease. Cell 126, 855-867.   DOI   ScienceOn
29 Park, J.Y., Park, M.R., Kwon, D.N., Kang, M.H., Oh, M., Han, J.W., Cho, S.G., Park, C., Kim, D.K., Song, H., et al. (2011). Alpha 1,3- galactosyltransferase deficiency in pigs increases sialyltransferase activities that potentially raise non-gal xenoantigenicity. J. Biomed. Biotechnol. 2011, 560850.
30 Park, J.Y., Park, M.R., Bui, H.T., Kwon, D.N., Kang, M.H., Oh, M., Han, J.W., Cho, S.G., Park, C., Shim, H., et al. (2012). alpha1,3- galactosyltransferase deficiency in germ-free miniature pigs increases N-glycolylneuraminic acids as the xenoantigenic determinant in pig-human xenotransplantation. Cell Reprogram 14, 353-363.   DOI
31 Sandrin, M.S., and McKenzie, I.F. (1994). Gal alpha (1,3)Gal, the major xenoantigen(s) recognised in pigs by human natural antibodies. Immunol. Rev. 141, 169-190.   DOI   ScienceOn
32 Puga Yung, G.L., Li, Y., Borsig, L., Millard, A.L., Karpova, M.B., Zhou, D., and Seebach, J.D. (2012) Complete absence of the alphaGal xenoantigen and isoglobotrihexosylceramide in alpha1,3galactosyltransferase knock-out pigs. Xenotransplantation 19, 196-206.   DOI   ScienceOn
33 Roseman, S. (2001). Reflections on glycobiology. J. Biol. Chem. 276, 41527-41542.   DOI   ScienceOn
34 Roth, J., Zuber, C., Park, S., Jang, I., Lee, Y., Kysela, K. G., Le Fourn, V., Santimaria, R., Guhl, B., and Cho, J.W. (2010). Protein N-glycosylation, protein folding, and protein quality control. Mol. Cells 30, 497-506.   DOI   ScienceOn
35 Toyoda, M., Ito, H., Matsuno, Y.K., Narimatsu, H., and Kameyama, A. (2008). Quantitative derivatization of sialic acids for the detection of sialoglycans by MALDI MS. Anal. Chem. 80, 5211-5218.   DOI   ScienceOn
36 Wada, Y., Azadi, P., Costello, C.E., Dell, A., Dwek, R.A., Geyer, H., Geyer, R., Kakehi, K., Karlsson, N.G., Kato, K., et al. (2007). Comparison of the methods for profiling glycoprotein glycans-- HUPO human disease glycomics/proteome initiative multiinstitutional study. Glycobiology 17, 411-422.   DOI   ScienceOn
37 Zhao, Y.Y., Takahashi, M., Gu, J.G., Miyoshi, E., Matsumoto, A., Kitazume, S., and Taniguchi, N. (2008). Functional roles of Nglycans in cell signaling and cell adhesion in cancer. Cancer Sci. 99, 1304-1310.   DOI   ScienceOn