Browse > Article

Expression and Characterization of Human N-Acetylglucosaminyltransferases and ${\alpha}$2,3-Sialyltransferase in Insect Cells for In Vitro Glycosylation of Recombinant Erythropoietin  

Kim, Na-Young (Department of Life Science, Sogang University)
Kim, Hyung-Gu (Department of Life Science, Sogang University)
Kim, Yang-Hyun (Department of Life Science, Sogang University)
Chung, In-Sik (Department of Genetic Engineering, Kyung Hee University)
Yang, Jai-Myung (Department of Life Science, Sogang University)
Publication Information
Journal of Microbiology and Biotechnology / v.18, no.2, 2008 , pp. 383-391 More about this Journal
Abstract
The glycans linked to the insect cell-derived glycoproteins are known to differ from those expressed in mammalian cells, partly because of the low level or lack of glycosyltransferase activities. GnT II, GnT IV, GnT V, and ST3Gal IV, which play important roles in the synthesis of tetraantennarytype complex glycan structures in mammalian cells, were overexpressed in Trichoplusia ni cells by using a baculovirus expression vector. The glycosyltransferases, expressed as a fusion form with the IgG-binding domain, were secreted into the culture media and purified using IgG sepharose resin. The enzyme assay, performed using a pyridylaminated-sugar chain as an acceptor, indicated that the purified glycosyltransferases retained their enzyme activities. Human erythropoietin expressed in T. ni cells (rhEPO) was subjected to in vitro glycosylation by using recombinant glycosyltransferases and was converted into complex-type glycan with terminal sialic acid. The presence of Nacetylglucosamine, galactose, and sialic acid on the rhEPO moiety was detected by a lectin blot analysis, and the addition of galactose and sialic acid to rhEPO was confirmed by autoradiography using $UDP-^{14}C-Gal\;and\;CMP-^{14}C-Sia$ as donors. The in vitro glycosylated rhEPO was injected into mice, and the number of reticulocytes among the ed blood cells was counted using FACS. A significant increase in the number of reticulocytes was not observed in the mice injected with in vitro glycosylated rhEPO as compared with those injected with rhEPO.
Keywords
Glycosyltransferase; baculovirus; glycoprotein; sialic acid; erythropoietin;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
1 Butters, T. D., R. C. Hughes, and P. Vischer. 1981. Steps in the biosynthesis of mosquito cell membrane glycoproteins and the effects of tunicamycin. Biochim. Biophys. Acta 640: 672-686   DOI   ScienceOn
2 Demir, I. and Z. Demirbag. 2006. A productive replication of Hyphantria cunea nucleopolyhedrovirus in Lymantria dispar cell line. J. Microbiol. Biotechnol. 16: 1485-1490   과학기술학회마을
3 Frederick, W. Q., L. F. Caslake, R. E. Burkert, and D. M. Wojchowski. 1989. High-level expression and purification of a recombinant human erythropoietin produced using a baculovirus vector. Blood 74: 652-657
4 Gunasekaran, K., B. Ma, B. Ramakrishnan, P. K. Oasba, and R. Nussinov. 2003. Interdependence of backbone flexibility, residue conservation, and enzyme function: A case study on $\beta1,4-galactosyltransferase-I$. Biochemistry 42: 3674-3687   DOI   ScienceOn
5 Jarvis, D. L. and E. E. Finn. 1995. Biochemical analysis of the N-glycosylation pathway in baculovirus-infected lepidopteran insect cells. Virology 212: 500-511   DOI   ScienceOn
6 Jarvis, D. L., D. Home, and J. J. Aumiller. 2001. Novel baculovirus expression vectors that provide sialylation of recombinant glycoproteins in lepidopteran insect cells. J. Virol. 75: 6223-6227   DOI   ScienceOn
7 Jason, R. H. and D. L. Jarvis. 2001. Engineering lepidopteran insect cells for sialoglycoprotein production by genetic transformation with mammalian $\beta1,4-galactosyltransferase$ and $\alpha2,6-sialyltransferase$. Glycobiology 11: 1-9   DOI   ScienceOn
8 Kim, H. G., S. M. Yang, Y. C. Lee, S. I. Do, I. S. Chung, and J. M. Yang. 2003. High-level expression of human glycosyltransferases in insect cells as biochemically active form. Biochem. Biophys. Res. Commun. 305: 488-493   DOI   ScienceOn
9 Kornfeld, R. and S. Kornfeld. 1985. Assembly of asparaginelinked oligosaccharides. Annu. Rev. Biochem. 54: 631-664   DOI   ScienceOn
10 Krantz, S. B. 1991. Erythropoietin. Blood 77: 419-434
11 Li, M. S., J. Y. Choi, J. Y. Roh, H. J. Shim, J. N. Kang, Y. S. Kim, Y. Wang, Z. N. Yu, B. R. Jin, and Y. H. Je. 2007. Identification and molecular characterization of novel cry1-type toxin genes from Bacillus thuringiensis K1 isolated in Korea. J. Microbiol. Biotechnol. 17: 15-20   과학기술학회마을
12 Miller, L. K. 1988. Baculoviruses for foreign gene expression in insect cells. Biotechnology 10: 457-465
13 Paulson, J. C., and K. J. Colley. 1989. Glycosyltransferases: Structure, localization, and control of cell type-specific glycosylation. J. Biol. Chem. 264: 17615-17618
14 Varki, A. 1993. Biological roles of oligosaccharides: All of the theories are correct. Glycobiology 3: 97-130   DOI   ScienceOn
15 Strasser, R., H. Steinkellner, M. Boren, F. Altman, L. Mach, J. Glossl, and J. Mucha. 1999. Molecular cloning of cDNA encoding N-acetylglucosaminyltransferase II from Arabidopsis thaliana. Glycoconj. J. 16: 787-791   DOI   ScienceOn
16 Kim, J. S., J. Y. Choi, J. Y. Roh, H. Y. Lee, S. S. Jang, and Y. H. Je. 2007. Production of recombinant polyhedral containing Cry1Ac fusion protein in insect cell lines. J. Microbiol. Biotechnol. 17: 739-744   과학기술학회마을
17 Noboru, T., D. Howe, J. J. Aumiller, M. Pathak, J. Park, K. B. Palter, D. L. Jarvis, M. J. Betenbaugh, and Y. C. Lee. 2003. Complex-type biantennary N-glycans of recombinant human transferrin from Trichoplusia ni insect cells expressing mammalian $\beta1,4-galactosyltransferase$ and $\beta1,2-Nacetylglucosaminyltransferase$ II. Glycobiology 13: 23-34   DOI   ScienceOn
18 Goldwasser, E. and C. K. Kung. 1968. Progress in the purification of erythropoietin. Ann. N. Y. Acad. Sci. 149: 49-53   DOI
19 Chang, K. H., N. I. Back, J. M. Yang, J. M. Lee, J. H. Bo, and I. S. Chung. 2005. Expression and characterization of recombinant $\beta-secretase$ from Trichoplusia ni BTI Tn5B1-4 cells transformed with cDNAs encoding human $\beta 1,4- galactosyltransferase$ and $Gal\beta1,4-GlcNAc\alpha2,6-sialyltransferase$. Protein Expr. Purif. 44: 87-93   DOI   ScienceOn
20 Hollister, J. R., J. H. Shaper, and D. L. Jarvis. 1998. Stable expression of mammalian $\beta1,4-galactosyltransferase$ extends the N-glycosylation pathway in insect cells. Glycobiology 8: 473-480   DOI   ScienceOn
21 Kang, C. S., S. Y. Son, and I. S. Bang. 2006. High-level expression T4 endonuclease V in insect cells as biologically active form. J. Microbiol. Biotechnol. 16: 1583-1590   과학기술학회마을
22 Martin, L., H. Wang, H. Zhihong, and J. A. Jehle. 2004. Towards a molecular identification and classification system of lepidopteran-specific baculovirus. Virology 325: 36-47   DOI   ScienceOn
23 Jarvis, D. L., Z. S. Kawar, and J. R. Hollister. 1998. Engineering N-glycosylation pathway in the baculovirus-insect cell system. Curr. Opin. Biotechnol. 9: 528-533   DOI   ScienceOn
24 Klingmuller, U., H. Wu, J. G. Hsiao, A. Toker, B. C. Duckworth, L. C. Cantley, and H. F. Lodish. 1997. Identification of a novel pathway important for proliferation and differentiation of primary erythroid progenitors. Pro. Natl. Acad. Sci. USA 94: 3016-3021
25 Jarvis, D. L. and E. E. Finn. 1996. Modifying the insect cell Nglycosylation pathway with immediate early baculovirus expression vectors. Nature Biotechnol. 14: 1288-1292   DOI   ScienceOn
26 Jarvis, D. L. 2003. Developing baculovirus-insect cell expression systems for humanized recombinant glycoprotein production. Virology 310: 1-7   DOI   ScienceOn
27 Park, E. I., M. Stephen, M. Manzella, and J. U. Baenziger. 2003. Rapid clearance of sialylated glycoproteins by the asialoglycoprotein receptor. J. Biol. Chem. 278: 4597-4602   DOI   ScienceOn
28 Nomura, T., M. Takizawa, J. Aoki, H. Arai, K. Inoue, E. Wakisaka, N. Yoshizuka, G. Imokawa, N. Dohmae, K. Takio, M. Hattori, and N. Matsuo. 1998. Purification, cDNA cloning, and expression of $UDP-Gal:Glucosylceramide\beta -1,4-galactosyltransferase$ from rat brain. J. Biol. Chem. 273: 13570-13577   DOI   ScienceOn
29 Altmann, F., G. Kornfeld, T. Dalik, E. Staudacher, and J. Glossl. 1993. Processing of asparagines-linked oligosaccharides in insect cells. N-Acetylglucosaminyltransferase I and II activities in cultured lepidopteran cells. Glycobiology 3: 619-625   DOI   ScienceOn
30 Lee, K.Y., H. G. Kim, M. R. Hwang, J. I. Chae, J. M. Yang, Y. C. Lee, Y. K. Choo, Y. I. Lee, S. S. Lee, and S. I. Do. 2002. The hexapeptide inhibitor of $Gal\beta1,3GalNAc- specific$$\alpha2,3-sialyltransferase$ as a generic inhibitor of sialyltransferases. J. Biol. Chem. 277: 49341-49351   DOI   ScienceOn
31 Steve, E., T. Lorenzini, D. Chang, J. Barzilay, and E. Delorme. 1997. Mapping of the active site of recombinant human erythropoietin. Blood 89: 493-502
32 Stollar, V., B. D. Stollar, R. Koo, K. A. Harrap, and R. W. Schlesinger. 1976. Sialic acid contents of Sindbis virus from vertebrate and mosquito cells. Equivalence of biological and immunological viral properties. Virology 69: 104-115   DOI   ScienceOn
33 Altmann, F., E. Staudacher, I. B. H. Wilson, and L. Marz. 1999. Insect cells as host for the expression of recombinant glycoproteins. Glycoconj. J. 16: 109-123   DOI   ScienceOn
34 Sasaki, H., B. Bothner, A. Dell, and M. Fukuda. 1987. Carbohydrate structure of erythropoietin expressed in Chinese hamster ovary cells by a human erythropoietin cDNA. J. Biol. Chem. 262: 12059-12076