• Title/Summary/Keyword: human stomach adenocarcinoma (AGS) cell

Search Result 16, Processing Time 0.023 seconds

Genistein-induced Growth Inhibition was Associated with Inhibition of Cyclooxygenase-2 and Telomerase Activity in Human Cancer Cells. (인체 암세포에서 genistein에 의한 cyclooxygenase-2 및 telomerase의 활성 저하)

  • Kim, Jung-Im;Kim, Seong-Yun;Seo, Min-Jeong;Lim, Hak-Seob;Lee, Young-Choon;Joo, Woo-Hong;Choi, Byung-Tae;Jeong, Yong-Kee;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.18 no.6
    • /
    • pp.884-890
    • /
    • 2008
  • Genistein, an isoflavone in soybean products, is a potential chemopreventive agent against various types of cancer. There are several studies documenting molecular alterations leading to cell cycle arrest at G2/M phase and induction of apoptosis; however, its mechanism of action and its molecular targets on the prostaglandin $E_2$ ($PGE_2$) production and telomere length regulation in human cancer remain unclear. In this study, we investigated the effect of genistein on the levels of cyclooxygenases (COXs) and telomere regulatory components of several human cancer cell lines (T24, human bladder carcinoma cells; U937, human leukemic cells; AGS, human stomach adenocarcinoma cells and SK-MEL-2, human skin melanoma cells). Genistein treatment resulted in the inhibition of cancer cell proliferation in a concentration-dependent manner. It was found that genistein treatment markedly decreased the levels of COX-2 mRNA and protein expression without significant changes in the expression of COX-1, which was correlated with a decrease in $PGE_2$ synthesis. Genistein treatment also partly inhibited the levels of human telomerase reverse transcriptase (hTERT) as well as human telomerase RNA (hTR) and telomerase-associated protein (TEP)-1, and the activity of telomerase. Taken together, these findings provide important new insights into the possible molecular mechanisms of the anti-cancer activity of genistein.

Enhancement of Anticancer Activity of Acer mono by High Pressure Extraction Process (고로쇠 수피 초고압 추출물의 항암활성 증진)

  • Jeong, Myoung-Hoon;Kim, Seung-Seop;Ha, Ji-Hye;Jin, Ling;Lee, Hak-Ju;Kang, Ha-Young;Park, Sung-Jin;Lee, Hyeon-Yong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.9
    • /
    • pp.1243-1252
    • /
    • 2009
  • We investigated a method to improve anticancer activities of Acer mono by ultra high pressure extraction process. The extract yields by ultra high pressure were 9.49% and 9.87% for 5 min and 15 min processing time, respectively, which were relatively higher than 3$\sim$4% of conventional extraction processes due to their resid bark structure. The extract for 15 minutes extraction (HPE15) showed higher potent scavenging effect as 94.56% than the control, BHA as 93.24%. On SOD-like test, HPE15 also showed the highest activity as 38.6% at 1.0 mg/mL concentration. The cytotoxicity of HPE15 on normal human lung and kidney cell were below 23.54% in adding 1.0 mg/mL. Generally, human cancer cell growth stomach adenocarcinoma (AGS), lung adenocarcinoma (A549), breast adenocarcinoma (MCF-7), colon adenocarcinoma (Caco-2) and liver adenocarcinoma (Hep3B) were inhibited up to 75% with higher selectivity of above 4.0. High antioxidant activity of HPE15 resulted in high anticancer activity, and its activity was also due to higher yields of Acer mono by ultra high pressure extraction process. It was also proved by HPLC comparison analysis.

Cytotoxicity of Particulate Matter in Various Human Cells Lines (미세먼지가 다양한 사람 세포주에 미치는 세포 독성)

  • Lee, Ji-Hyeon;Lee, Joo-Yeong;Kim, Mi-Jeong;Kim, Hyeon-Ji;Lee, Sung-Ho;Jeon, Byeong-Gyun
    • Journal of Life Science
    • /
    • v.29 no.6
    • /
    • pp.724-734
    • /
    • 2019
  • The present study investigated the cytotoxicity of particulate matter (PM) derived from car air filter (outdoor PM) and home cleaner filter (indoor PM) in the various human cell lines. Each outdoor and indoor PM were harvested by ethanol extraction method, subsequently sieved with 10 um filter paper, sterilized with autoclave and added to culture media. The half maximal inhibitory concentration ($IC_{50}$) values was significantly (p<0.05) lower in the outdoor PM, compared with indoor PM, and the significantly (p<0.05) higher $IC_{50}$ values were observed in the cancer cell lines (A-549 lung adenocarcinoma and AGS stomach adenocarcinoma), than those of normal MRC-5 fibroblasts and dental papilla tissue derived-mesenchymal stem cells (DSC). After being exposed to $100{\mu}g/ml$ outdoor PM for 7 days, the population doubling time (PDT) was significantly (p<0.05) increased in especially MRC-5 and DSC cell lines, compared with untreated cell lines. Further, the expression of senescence-associated ${\beta}$-galactosidase activity was up-regulated in all the cells exposed to outdoor PM than those of untreated control. Besides, the expression level of inflammation-associated genes, such as cyclooxygenase-2 (COX-2) and interleukin-6 (IL-6) was found to be significantly (p<0.05) increased in the outdoor PM-treated cell lines than those of untreated cell lines. Our results showed that PM induces the cytotoxicity via arrest of cell growth, cell damage and inflammation response.

Improvement of Biological activities of Acer mono and Acer okamotoanum Saps by Nano-encapsulation Process (나노입자화 공정을 이용한 고로쇠 및 우산고로쇠 수액의 유용생리활성 증진)

  • Jeong, Myoung-Hoon;Ha, Ji-Hye;Oh, Sung-Ho;Kim, Seung-Seop;Jin, Ling;Lee, Hak-Ju;Kang, Ha-Young;Prak, Uk-Yeon;Lee, Hyeon-Yong
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.4
    • /
    • pp.399-408
    • /
    • 2009
  • We investigated the improvement of immuno-modulatory activities of sap of Acer mono and A. okamotoanum encapsulated with edible polymers. Anticancer activities and immune activities such as human B and T cell growth, secretion of cytokines and natural killer cell growth were observed. Both human immune B and T cells were increased up to 30~50% by the addition of nano particle sap of Acer mono and A. okamotoanum. The secretion of Interleukin-6 (IL-6) and Tumor necrosis factor-a (TNF-a) from human immune B and T cells were also significantly increased compare to the control. Natural Killer (NK) cell growth was enhanced to $19.4{\times}10^5$ cells/mL in adding nano encapsulated sap of A.okamotoanum. The cytotoxicity of the sample on normal human lung cell (HEL299) was below 19.8% in adding 1.0 mg/mL of the nano particle sap of A. okamotoanum. Generally, the growth of all three human lung adenocarcinoma, human stomach adenocarcinoma and human liver adenocarcinama was inhibited up to 85% in adding 1.0 mg/mL of the encapsulated sap. Interestingly enough, the encapsulated sap was completely penetrated into human cancer cells within 30 min after addition. It showed that the encapsulation of the sap definitely increased its biological activities, which can expand its use to wide range of food industries.

Comparison of Cytotoxin and Immune Activities between Natural and Tissue Cultured Plant in Artemisia capillaris Thunb. (자연산 및 조직배양 사철쑥의 세포독성 및 면역활성 비교)

  • Kim, Jung-Hwa;Kim, Dae-Ho;You, Jin-Hyun;Kim, Cheol-Hee;Kwon, Min-Chul;Hwang, Baik;Lee, Hyeon-Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.13 no.4
    • /
    • pp.154-160
    • /
    • 2005
  • This study was performed to compare anticancer and immune activities between natural Artemisia capillaris Thunb. extract and tissue cultured plant extract (hairy root, in vitro culture, callus). The inhibitory effect of cancer cell growth, human B cell growth and productivity of cytokines were examined. Furthermore, HPLC analysis was performed to confirm the components. The anticancer activities increased by more than 55% with the cultured callus of Artemisia capillaris T. for four cancer cell lines(Lung carcunoma, Stomach adenocarcinoma, Hepatocillular carcinoma, Breast adenocarcinoma), showing higher effect than natural Artemisia capillaris T. The extracts from hairy root and in vitro culture of Artemisia capillaris T. significantly increased the immune B cell growth. The immune B cell growth effect of natural Artemisia capillaris T. was higher than that of the tissue culture plants such as hairy root, in vitro culture and callus. Both natural and tissue cultured plants showed similar effects on cytokine secretion. The similar peak size was observed between natural Artemisia capillaris T. and cultured callus in HPLC analysis. As a results, the biological activities were not observed the difference between natural Artemisia capillaris T. and cultured callus. Thus, the cultured callus will be altered natural Artemisia capillaris T. in the environmental side and the resources preservative side

Comparison of Anticancer Activities of Ultrasonification Extracts of Callus and Roots from Rhodiola sachalinensis A. Bor (홍경천 뿌리 및 캘러스 초음파 추출물의 항암활성 비교)

  • Ha, Ji-Hye;Jeong, Hyang-Suk;Jeong, Myoung-Hoon;Kim, Seung-Seop;Jin, Ling;Nam, Jong-Hyun;Hwang, Baik;Ma, Choong-Je;Lee, Hyeon-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.5
    • /
    • pp.552-559
    • /
    • 2009
  • In this study, the anticancer activity of the water extract at $100^{\circ}C$ was compared to that of the callus extracts via a ultrasonification extraction process. All the extracts were utilized to evaluate cytotoxicity, antioxidant and immune activities. The callus extracted via ultrasonification extraction showed relatively low cytotoxicity on normal human cell lines, HEK293 and HEL299, showing 13.17% and 21.78%, respectively. The callus extract has 59.82% which was similar to 61.70% for water extracts. It was also found that callus extract yielded higher nitric oxide secretion form macrophage than other extracts. The growths of both human stomach adenocarcinoma (AGS) cell and human lung carcinoma (A549) were inhibited up to 70% by adding 1.0 mg/mL of the callus extracts with ultrasonification extraction. This inhibition ratio (70%) was almost close to that of water extract. Human hepatoma carcinoma (HEP3B) cell growth was most significantly inhibited up to 75% by adding 1.0 mg/mL of callus extracts, and its selectivity was highest compared to other extracts. It indicates that the callus extracts could selectively inhibit growth of digestive system-related cancer cells. It can be also concluded from the results of this study that the callus extracts associated with ultrasonification extraction process have the potential for anticancer activity.