• Title/Summary/Keyword: human rhinovirus

Search Result 35, Processing Time 0.025 seconds

Selection of model viruses for foot-and-mouth disease virus-related-experiments (구제역 바이러스를 대체할 모델 바이러스 선별)

  • Kim, Tae-Hwan;Herath, Thilina U. B.;Kim, Jae-Hoon;Lee, Kwang-Nyeong;Park, Jong-Hyeon;Kim, Chul-Joong;Lee, Jong-Soo
    • Korean Journal of Microbiology
    • /
    • v.53 no.4
    • /
    • pp.304-308
    • /
    • 2017
  • Researchers have comparatively fewer opportunities to conduct experiments on foot-and-mouth disease virus (FMDV), owing to the limited availability of biosafety level 3 facilities. Bovine rhinovirus (BRV) and human rhinovirus (HRV), which are genetically closely related to FMDV, have been evaluated in this study as model viruses for FMDV. To discover whether BRV and HRV have similar physicochemical properties as FMDV, virus susceptibility tests have been performed in different physical (pH and heat) and chemical (acidic/alkaline solutions and commercial disinfectants) conditions in vitro. Our data revealed that the physicochemical characteristics of BRV and HRV were nearly similar to those of FMDV.

Rhinovirus and childhood asthma: an update

  • Song, Dae Jin
    • Clinical and Experimental Pediatrics
    • /
    • v.59 no.11
    • /
    • pp.432-439
    • /
    • 2016
  • Asthma is recognized as a complex disease resulting from interactions between multiple genetic and environmental factors. Accumulating evidence suggests that respiratory viral infections in early life constitute a major environmental risk factor for the development of childhood asthma. Respiratory viral infections have also been recognized as the most common cause of asthma exacerbation. The advent of molecular diagnostics to detect respiratory viruses has provided new insights into the role of human rhinovirus (HRV) infections in the pathogenesis of asthma. However, it is still unclear whether HRV infections cause asthma or if wheezing with HRV infection is simply a predictor of childhood asthma. Recent clinical and experimental studies have identified plausible pathways by which HRV infection could cause asthma, particularly in a susceptible host, and exacerbate disease. Airway epithelial cells, the primary site of infection and replication of HRV, play a key role in these processes. Details regarding the role of genetic factors, including ORMDL3, are beginning to emerge. This review discusses recent clinical and experimental evidence for the role of HRV infection in the development and exacerbation of childhood asthma and the potential underlying mechanisms that have been proposed.

Laboratory Investigation of Human Rhinovirus Infection in Cheonan, Korea (7년간 천안지역 대학병원에서의 라이노바이러스 감염 양상에 대한 연구)

  • Jung, Bo Kyeung;Kim, Jae Kyung
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.51 no.3
    • /
    • pp.329-335
    • /
    • 2019
  • Annually, millions of children die from respiratory virus infections. Human rhinovirus (HRV) is a causative agent of severe respiratory infections in young, elderly, and asthmatic patients with weak immunity. In this study, 9,010 respiratory virus specimens were collected from January 2012 to December 2018 at Dankook University Hospital, Cheonan and examined by real-time reverse transcription polymerase chain reaction. Twelve respiratory viruses were detected. The mean detection rate was 21.3% (N=1,920/9,010), and the mean age of HRV-positive patients was 6.5 years (median age: 1.6 years, range: 0.0~96.0). The detection rate was the highest in July (32.4%) and the lowest in February (8.3%). When the detection rate was analyzed by age group, the detection rate was the second highest in patients aged 10~19 years. The co-infection rate of HRV was 35.3%, and the most common combination was with Adenovirus. Respiratory virus infections are known to occur in children and elderly people with weak immunity. However, in this study, the detection rate was second highest in patients aged 10~19 years. Indeed, the detection rate in this age group was more than 15%, except in January and February. These results suggested that steady-state studies on the infection patterns of HRV are required.

Epidemiology and Clinical Features of Respiratory Viruses in Pediatric Inpatients in a Single Medical Center in Daegu from 2010 to 2012 (대구지역 단일병원에서 입원 환아의 호흡기 바이러스 역학 및 임상 양상: 2010-2012년)

  • Lee, Eun-Kyung;Lee, Yun-Young;Choi, Kwang-Hae
    • Journal of Yeungnam Medical Science
    • /
    • v.30 no.2
    • /
    • pp.95-100
    • /
    • 2013
  • Background: This study was performed to investigate the epidemiologic and clinical features of acute respiratory viral infection in hospitalized children. Methods: From 2010 to 2012, we tested nasopharyngeal swab specimen in 1,584 hospitalized children with multiple real-time polymerase chain reactions to identify 10 kinds of respiratory viruses (including influenza virus A, B (FluA, FluB), respiratory syncytial virus (RSV), human metapneumovirus (MPV), adenovirus (AdV), human coronavirus (CoronaV), human enterovirus (HEV), human bocavirus (HBoV), parainfluenza virus (PIV), and human rhinovirus (Rhinovirus)). We analyzed the positive rate, annual and seasonal variations, and clinical features (respiratory tract and non-respiratory tract) according to the retrospective review of medical records. Results: Respiratory viruses were detected from 678 (42.8%) of 1,584 patients. The most common detected virus was RSV (35.0%), and then AdV (19.0%), HEV (18.1%). The critical period of the respiratory viral infection was during the first 12 months of a child's life. PIV increased by 8.4%, 12.1%, and 21.1% annually. Bronchiolitis was most frequently caused by RSV, and croup was frequently caused by PIV. The most common cause of meningitis was HEV. Hepatitis-associated respiratory virus was developed 111 in 678 cases. Conclusion: Although this study was confined to a single medical center for three years, we identified the epidemiology and clinical feature of respiratory viruses in Daegu from 2010 to 2012. Future surveillance will be necessary for annual and seasonal variations.

Association between Respiratory Virus Infection and Pneumococcal Colonization in Children (소아에서의 호흡기바이러스 감염과 비인두 폐렴구균 보균의 연관성)

  • Lee, Hyeon Seung;Choe, Young June;Cho, Eun Young;Lee, Hyunju;Choi, Eun Hwa;Lee, Hoan Jong
    • Pediatric Infection and Vaccine
    • /
    • v.21 no.3
    • /
    • pp.207-213
    • /
    • 2014
  • Purpose: This study aimed to investigate the association between respiratory virus infection and pneumococcal colonization in children. Methods: From May 2009 to June 2010, nasopharyngeal (NP) aspirates were obtained from patients under 18 years old who visited Seoul National University Children's Hospital for respiratory symptoms. NP samples were used to detect respiratory viruses (influenza virus A and B, parainfluenza virus 1, 2 and 3, respiratory syncytial virus A and B, adenovirus, rhinovirus A/B, human metapneumovirus, human coronavirus 229E/NL63 and OC43/HKU1) by RT-PCR and pneumococcus by culture. Results: Median age of the patients was 27 months old. A total of 1,367 NP aspirates were tested for respiratory viruses and pneumococcus. Pneumococcus was isolated from 228 (16.7%) of samples and respiratory viruses were detected from 731 (53.5%). Common viruses were rhinovirus (18.4%), respiratory syncytial virus (RSV) A (10.6%), adenovirus (6.9%), influenza virus A (6.8%). Pneumococcal isolation rate was significantly higher in the cases of positive virus detection than negative detection [21.3% (156/731) vs. 11.3% (72/636), P <0.001]. For individual viruses, pneumococcal isolation rate was positively associated with detection of influenza virus A [24.7% (23/93) vs 16.1% (205/1274), P=0.001], RSV A [28.3% (41/145) vs 15.3% (187/1222), P=0.001], RSV B [31.3% (10/32) vs 16.3% (218/1335), P=0.042], rhinovirus A/B [22.6% (57/252) vs 15.3% (171/1115), P=0.010]. Conclusion: The study revealed that pneumococcal isolation from NP aspirates is related with respiratory virus detection. The result of this study could be used to investigate how respiratory viruses and pneumococcus cause clinical diseases.

Prevalence of respiratory viral infection in children hospitalized for acute lower respiratory tract diseases, and association of rhinovirus and influenza virus with asthma exacerbations

  • Kwon, Jang-Mi;Shim, Jae Won;Kim, Deok Soo;Jung, Hye Lim;Park, Moon Soo;Shim, Jung Yeon
    • Clinical and Experimental Pediatrics
    • /
    • v.57 no.1
    • /
    • pp.29-34
    • /
    • 2014
  • Purpose: In this study, we aimed to investigate the prevalence of year-round respiratory viral infection in children with lower respiratory tract infection (LRTI) and the relationship between respiratory viral infection and allergen sensitization in exacerbating asthma. Methods: We investigated the sources for acute LRTIs in children admitted to our hospital from May 2010 to April 2011. The 6 most common respiratory viruses were isolated from nasopharyngeal aspirate using multiplex reverse transcription-polymerase chain reaction in 309 children; respiratory syncytial virus (RSV), adenovirus (AV), parainfluenza virus (PIV), influenza virus (IFV), human metapneumovirus (hMPV), rhinovirus (RV). Atopic sensitization was defined if more than 1 serum specific Immunoglobulin E level measured using UniCAP (Pharmacia) was over 0.35 IU/mL. Results: RSV was the most common pathogen of bronchiolitis in hospitalized children through the year. RV or IFV infection was more prevalent in asthma exacerbations compared to other LRTIs. AV and hMPV were more likely to cause pneumonia. RV and IFV were associated with asthma exacerbations in children with atopic sensitization, but not in nonatopic children. Conclusion: RV and IFV are associated with hospitalization for asthma exacerbation in children with atopic sensitization.

The Role of Interleukin 8 and NF(nuclear factor)-κB in Rhinovirus-Induced Airway Inflammation (Rhinovirus 유발성 기도염증반응에서 Interleukin-8과 전사인자 NF(nuclear factor)-κB의 역할에 대한 연구)

  • Yoon, Ho Joo;Kim, Mi Ok;Sohn, Jang Won;Kim, Jung Mogg;Shin, Dong Ho;Park, Sung Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.54 no.1
    • /
    • pp.104-113
    • /
    • 2003
  • Background : Rhinovirus(RV) infections frequently trigger dyspnea and paroxysmal cough in adult patients with asthma and are the most prevalent cause of the common cold. However, the mechanisms of a RV-induced airway inflammation is unclear. Since the RV does not directly destroy the airway epithelium, it is presumed that the immune response to the RV contributes to the pathogenesis of the respiratory symptoms. In order to test this hypothesis, this study characterized the time-sequenced alterations in interleukin(IL)-8 elaboration from the human bronchial epithelial cells and evaluated the role of NF(nuclear factor)-${\kappa}B$ in the RV-induced IL-8 production by pretreating the inhibitors of NF-${\kappa}B$ activation. Methods : The ability of RV-infected human bronchial epithelial cells and BEAS-2B cells to produce the IL-8 was compared with the controls. This study infected BEAS-2B cells with the RV14 obtained from the American Type Culture Collection. The supernatants were harvested from the RV infected BEAS-2B cells and the controls at 2hr, 4hr, 6hr, 12hr, 24hr, 48hr from the inoculation time. This study measured the IL-8 concentration using the ELISA kits. In order to elucidate the role of NF-${\kappa}B$ in the RV-induced IL-8 production, the effect of the NF-${\kappa}B$ inhibitors was evaluated on RV-induced IL-8 production. Results: The BEAS-2B cells produced small amounts of IL-8 that accumulated slowly with time in the culture. The RV was a potent stimulator of the IL-8 proteins production by BEAS-2B human bronchial epithelial cells. Antioxidants, N-acetyl-L-cysteine(NAC),\ and pyrrolidine dithiocarbamate(PDTC), blocked the IL-8 elaboration by the RV-infected BEAS-2B cells, which was dose-dependent, but N-Tosyl-L-phenylalanine chloromethyl ketone(TPCK) did not. Conclusion: Some antioxidants inhibited the RV-induced IL-8 production by blocking the NF-${\kappa}B$, which may have a therapeutic potential in asthma.

Human rhinoviruses and asthma in children

  • Kim, Woo Kyung
    • Clinical and Experimental Pediatrics
    • /
    • v.53 no.2
    • /
    • pp.129-135
    • /
    • 2010
  • Human rhinoviruses (HRVs) is a nonenveloped, single stranded RNA virus belonging to the family Picornavirudae. Transmission by direct contact such as hand-to-hand, hand-to-nose, and hand-to-eye has been readily demonstrated in experimental settings. HRV are the most frequent causes of common cold infection, however, they are also known to replicate in the lower respiratory tract and associated with more severe respiratory illnesses such as asthma. New technique such as reverse transcriptase polymerase chain reaction and molecular typing in HRV has been developed and our understanding of the importance of these respiratory viruses. HRVs consisted of 101 serotypes that are classified into groups A and B according to sequence variations. And there is a newly identified set of HRVs, called Group C, and it is currently under investigation. In recent study using PCR techniques, HRVs accounted for approximate 50-80% of common colds and 85 % of childhood asthma exacerbations and in more than half of adult exacerbations. However, the mechanisms of HRV- induced asthma exacerbations are poorly understood. This review discusses the association between HRVs and childhood asthma.

Ginseng, the natural effectual antiviral: Protective effects of Korean Red Ginseng against viral infection

  • Im, Kyungtaek;Kim, Jisu;Min, Hyeyoung
    • Journal of Ginseng Research
    • /
    • v.40 no.4
    • /
    • pp.309-314
    • /
    • 2016
  • Korean Red Ginseng (KRG) is a heat-processed ginseng developed by the repeated steaming and air-drying of fresh ginseng. Compared with fresh ginseng, KRG has been shown to possess greater pharmacological activities and stability because of changes that occur in its chemical constituents during the steaming process. In addition to anticancer, anti-inflammatory, and immune-modulatory activities, KRG and its purified components have also been shown to possess protective effects against microbial infections. Here, we summarize the current knowledge on the properties of KRG and its components on infections with human pathogenic viruses such as respiratory syncytial virus, rhinovirus, influenza virus, human immunodeficiency virus, human herpes virus, hepatitis virus, norovirus, rotavirus, enterovirus, and coxsackievirus. Additionally, the therapeutic potential of KRG as an antiviral and vaccine adjuvant is discussed.

Antiviral and Anti-Inflammatory Activities of Pochonin D, a Heat Shock Protein 90 Inhibitor, against Rhinovirus Infection

  • Song, Jae-Hyoung;Shim, Aeri;Kim, Yeon-Jeong;Ahn, Jae-Hee;Kwon, Bo-Eun;Pham, Thuy Trang;Lee, Jongkook;Chang, Sun-Young;Ko, Hyun-Jeong
    • Biomolecules & Therapeutics
    • /
    • v.26 no.6
    • /
    • pp.576-583
    • /
    • 2018
  • Human rhinoviruses (HRV) are one of the major causes of common cold in humans and are also associated with acute asthma and bronchial illness. Heat-shock protein 90 (Hsp90), a molecular chaperone, is an important host factor for the replication of single-strand RNA viruses. In the current study, we examined the effect of the Hsp90 inhibitor pochonin D, in vitro and in vivo, using a murine model of human rhinovirus type 1B (HRV1B) infection. Our data suggested that Hsp90 inhibition significantly reduced the inflammatory cytokine production and lung damage caused by HRV1B infection. The viral titer was significantly lowered in HRV1B-infected lungs and in Hela cells upon treatment with pochonin D. Infiltration of innate immune cells including granulocytes and monocytes was also reduced in the bronchoalveolar lavage (BAL) by pochonin D treatment after HRV1B infection. Histological analysis of the lung and respiratory tract showed that pochonin D protected the mice from HRV1B infection. Collectively, our results suggest that the Hsp90 inhibitor, pochonin D, could be an attractive antiviral therapeutic for treating HRV infection.