DOI QR코드

DOI QR Code

Selection of model viruses for foot-and-mouth disease virus-related-experiments

구제역 바이러스를 대체할 모델 바이러스 선별

  • Kim, Tae-Hwan (College of Veterinary Medicine, Chungnam National University) ;
  • Herath, Thilina U. B. (College of Veterinary Medicine, Chungnam National University) ;
  • Kim, Jae-Hoon (College of Veterinary Medicine, Chungnam National University) ;
  • Lee, Kwang-Nyeong (Foot and Mouth Disease Division, Animal Quarantine and Inspection Agency) ;
  • Park, Jong-Hyeon (Foot and Mouth Disease Division, Animal Quarantine and Inspection Agency) ;
  • Kim, Chul-Joong (College of Veterinary Medicine, Chungnam National University) ;
  • Lee, Jong-Soo (College of Veterinary Medicine, Chungnam National University)
  • 김태환 (충남대학교 수의과대학 수의학과) ;
  • 틸리나 (충남대학교 수의과대학 수의학과) ;
  • 김재훈 (충남대학교 수의과대학 수의학과) ;
  • 이광녕 (농림축산검역본부 구제역진단과) ;
  • 박종현 (농림축산검역본부 구제역진단과) ;
  • 김철중 (충남대학교 수의과대학 수의학과) ;
  • 이종수 (충남대학교 수의과대학 수의학과)
  • Received : 2017.09.14
  • Accepted : 2017.10.17
  • Published : 2017.12.31

Abstract

Researchers have comparatively fewer opportunities to conduct experiments on foot-and-mouth disease virus (FMDV), owing to the limited availability of biosafety level 3 facilities. Bovine rhinovirus (BRV) and human rhinovirus (HRV), which are genetically closely related to FMDV, have been evaluated in this study as model viruses for FMDV. To discover whether BRV and HRV have similar physicochemical properties as FMDV, virus susceptibility tests have been performed in different physical (pH and heat) and chemical (acidic/alkaline solutions and commercial disinfectants) conditions in vitro. Our data revealed that the physicochemical characteristics of BRV and HRV were nearly similar to those of FMDV.

구제역 바이러스 연구가 BSL-3 시설에 제한되기 때문에 여러 가지 소독제나 항바이러스 제제에 대한 효력 및 효능 평가가 쉽게 이루어질 수 없다. 따라서 구제역 바이러스와 계통학적으로 유사한 bovine rhinovirus (BRV)와 human rhinovirus (HRV)의 특성을 열, pH 그리고 여러가지 소독제를 이용하여 평가하였다. 그 결과 구제역 바이러스의 성상과 매우 흡사한 것을 확인할 수 있었다. 이러한 결과로 BRV와 HRV는 구제역 바이러스를 대체할 수 있는 모델 바이러스로 이용이 가능하다.

Keywords

References

  1. Alexandersen, S., Zhang, Z., Donaldson, A., and Garland, A. 2003. The pathogenesis and diagnosis of foot-and-mouth disease. J. Comp. Pathol. 129, 1-36. https://doi.org/10.1016/S0021-9975(03)00041-0
  2. Arzt, J., Baxt, B., Grubman, M., Jackson, T., Juleff, N., Rhyan, J., Rieder, E., Waters, R., and Rodriguez, L. 2011. The pathogenesis of foot-and-mouth disease II: viral pathways in swine, small ruminants, and wildlife; myotropism, chronic syndromes, and molecular virus-host interactions. Transbound. Emerg. Dis. 58, 305-326. https://doi.org/10.1111/j.1865-1682.2011.01236.x
  3. Bachrach, H.L. 1968. Foot-and-mouth disease. Annu. Rev. Microbiol. 22, 201-244. https://doi.org/10.1146/annurev.mi.22.100168.001221
  4. Engvall, A. and Sternberg, S. 2004. Other health related issues: veterinary practice, pp. 604-615. In Fraise, A., Lambert, P., and Maillard, J. (eds.), Russel, Hugo & Ayliffe's Principles and Practice of Disinfection, Preservation & Sterilization, 4th ed. Blackwell Publishing Ltd., Oxford, UK.
  5. Fellowes, O. 1960. Chemical inactivation of foot-and-mouth disease virus. Ann. N. Y. Acad. Sci. 83, 595-608.
  6. Gall, A.M., Marinas, B.J., Lu, Y., and Shisler, J.L. 2015. Waterborne viruses: a barrier to safe drinking water. PLoS Pathog. 11, e1004867. https://doi.org/10.1371/journal.ppat.1004867
  7. Hollister, J.R., Vagnozzi, A., Knowles, N.J., and Rieder, E. 2008. Molecular and phylogenetic analyses of bovine rhinovirus type 2 shows it is closely related to foot-and-mouth disease virus. Virology 373, 411-425. https://doi.org/10.1016/j.virol.2007.12.019
  8. Kamolsiripichaiporn, S., Subharat, S., Udon, R., Thongtha, P., and Nuanualsuwan, S. 2007. Thermal inactivation of foot-and-mouth disease viruses in suspension. Appl. Environ. Microbiol. 73, 7177-7184. https://doi.org/10.1128/AEM.00629-07
  9. Krug, P.W., Larson, C.R., Eslami, A.C., and Rodriguez, L.L. 2012. Disinfection of foot-and-mouth disease and African swine fever viruses with citric acid and sodium hypochlorite on birch wood carriers. Vet. Microbiol. 156, 96-101. https://doi.org/10.1016/j.vetmic.2011.10.032
  10. Li, R., Baysal-Gurel, F., Abdo, Z., Miller, S.A., and Ling, K.S. 2015. Evaluation of disinfectants to prevent mechanical transmission of viruses and a viroid in greenhouse tomato production. Virol. J. 12, 5. https://doi.org/10.1186/s12985-014-0237-5
  11. Newman, J., Rowlands, D., and Brown, F. 1973. A physico-chemical sub-grouping of the mammalian picornaviruses. J. Gen. Virol. 18, 171-180. https://doi.org/10.1099/0022-1317-18-2-171
  12. OIE Standards Commission. 2000. General recommendations on disinfection and disinsectisation. terrestrial animal health code, Paris, France.
  13. Stenfeldt, C., Diaz-San Segundo, F., De Los Santos, T., Rodriguez, L.L., and Arzt, J. 2016. The pathogenesis of foot-and-mouth disease in pigs. Front. Vet. Sci. 3, 41.
  14. US Environmental Protection Agency. 2010. Product performance test guidelines OPPTS 810.2200: disinfectants for use on hard surfaces-efficacy data recommendations. available from: http://www.regulations.gov (Docket ID: EPA-HQ-OPP-2009-0681-0004).
  15. Zou, S., Guo, J., Gao, R., Dong, L., Zhou, J., Zhang, Y., Dong, J., Bo, H., Qin, K., and Shu, Y. 2013. Inactivation of the novel avian influenza A (H7N9) virus under physical conditions or chemical agents treatment. Virol. J. 10, 289. https://doi.org/10.1186/1743-422X-10-289