Browse > Article
http://dx.doi.org/10.4062/biomolther.2017.233

Antiviral and Anti-Inflammatory Activities of Pochonin D, a Heat Shock Protein 90 Inhibitor, against Rhinovirus Infection  

Song, Jae-Hyoung (College of Pharmacy, Kangwon National University)
Shim, Aeri (College of Pharmacy, Kangwon National University)
Kim, Yeon-Jeong (College of Pharmacy, Inje University)
Ahn, Jae-Hee (College of Pharmacy, Kangwon National University)
Kwon, Bo-Eun (College of Pharmacy, Kangwon National University)
Pham, Thuy Trang (College of Pharmacy, Kangwon National University)
Lee, Jongkook (College of Pharmacy, Kangwon National University)
Chang, Sun-Young (College of Pharmacy, Ajou University)
Ko, Hyun-Jeong (College of Pharmacy, Kangwon National University)
Publication Information
Biomolecules & Therapeutics / v.26, no.6, 2018 , pp. 576-583 More about this Journal
Abstract
Human rhinoviruses (HRV) are one of the major causes of common cold in humans and are also associated with acute asthma and bronchial illness. Heat-shock protein 90 (Hsp90), a molecular chaperone, is an important host factor for the replication of single-strand RNA viruses. In the current study, we examined the effect of the Hsp90 inhibitor pochonin D, in vitro and in vivo, using a murine model of human rhinovirus type 1B (HRV1B) infection. Our data suggested that Hsp90 inhibition significantly reduced the inflammatory cytokine production and lung damage caused by HRV1B infection. The viral titer was significantly lowered in HRV1B-infected lungs and in Hela cells upon treatment with pochonin D. Infiltration of innate immune cells including granulocytes and monocytes was also reduced in the bronchoalveolar lavage (BAL) by pochonin D treatment after HRV1B infection. Histological analysis of the lung and respiratory tract showed that pochonin D protected the mice from HRV1B infection. Collectively, our results suggest that the Hsp90 inhibitor, pochonin D, could be an attractive antiviral therapeutic for treating HRV infection.
Keywords
Rrhinovirus; Antiviral activity; Pochonin D; Heat-shock protein 90; Anti-inflammatory;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Roe, S. M., Prodromou, C., O'Brien, R., Ladbury, J. E., Piper, P. W. and Pearl, L. H. (1999) Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin. J. Med. Chem. 42, 260-266.   DOI
2 Saklatvala, J., Rawlinson, L., Waller, R. J., Sarsfield, S., Lee, J. C., Morton, L. F., Barnes, M. J. and Farndale, R. W. (1996) Role for p38 mitogen-activated protein kinase in platelet aggregation caused by collagen or a thromboxane analogue. J. Biol. Chem. 271, 6586-6589.   DOI
3 Seo, S. U., Kwon, H. J., Ko, H. J., Byun, Y. H., Seong, B. L., Uematsu, S., Akira, S. and Kweon, M. N. (2011) Type I interferon signaling regulates Ly6C(hi) monocytes and neutrophils during acute viral pneumonia in mice. PLoS Pathog. 7, e1001304.   DOI
4 Seo, S. U., Kwon, H. J., Song, J. H., Byun, Y. H., Seong, B. L., Kawai, T., Akira, S. and Kweon, M. N. (2010) MyD88 signaling is indispensable for primary influenza A virus infection but dispensable for secondary infection. J. Virol. 84, 12713-12722.   DOI
5 Shi, L., Xiong, H., He, J., Deng, H., Li, Q., Zhong, Q., Hou, W., Cheng, L., Xiao, H. and Yang, Z. (2007) Antiviral activity of arbidol against influenza A virus, respiratory syncytial virus, rhinovirus, coxsackie virus and adenovirus in vitro and in vivo. Arch. Virol. 152, 1447-1455.   DOI
6 Smith, D. R., McCarthy, S., Chrovian, A., Olinger, G., Stossel, A., Geisbert, T. W., Hensley, L. E. and Connor, J. H. (2010) Inhibition of heat-shock protein 90 reduces Ebola virus replication. Antiviral Res. 87, 187-194.   DOI
7 Song, J. H., Park, K. S., Kwon, D. H. and Choi, H. J. (2013) Anti-human rhinovirus 2 activity and mode of action of quercetin-7-glucoside from Lagerstroemia speciosa. J. Med. Food 16, 274-279.   DOI
8 Song, J., Yeo, S. G., Hong, E. H., Lee, B. R., Kim, J. W., Kim, J., Jeong, H., Kwon, Y., Kim, H., Lee, S., Park, J. H. and Ko, H. J. (2014) Antiviral activity of hederasaponin b from hedera helix against enterovirus 71 subgenotypes C3 and C4a. Biomol. Ther. (Seoul) 22, 41-46.   DOI
9 Subauste, M. C., Jacoby, D. B., Richards, S. M. and Proud, D. (1995) Infection of a human respiratory epithelial cell line with rhinovirus. Induction of cytokine release and modulation of susceptibility to infection by cytokine exposure. J. Clin. Invest. 96, 549-557.   DOI
10 Sun, X., Bristol, J. A., Iwahori, S., Hagemeier, S. R., Meng, Q., Barlow, E. A., Fingeroth, J. D., Tarakanova, V. L., Kalejta, R. F. and Kenney, S. C. (2013) Hsp90 inhibitor 17-DMAG decreases expression of conserved herpesvirus protein kinases and reduces virus production in Epstein-Barr virus-infected cells. J. Virol. 87, 10126-10138.   DOI
11 Wang, M., Shen, A., Zhang, C., Song, Z., Ai, J., Liu, H., Sun, L., Ding, J., Geng, M. and Zhang, A. (2016) Development of Heat Shock Protein (Hsp90) Inhibitors To Combat Resistance to Tyrosine Kinase Inhibitors through Hsp90-Kinase Interactions. J. Med. Chem. 59, 5563-5586.   DOI
12 Zaheer, R. S., Wiehler, S., Hudy, M. H., Traves, S. L., Pelikan, J. B., Leigh, R. and Proud, D. (2014) Human rhinovirus-induced ISG15 selectively modulates epithelial antiviral immunity. Mucosal Immunol. 7, 1127-1138.   DOI
13 Zhou, H., Qiao, K., Gao, Z., Vederas, J. C. and Tang, Y. (2010) Insights into radicicol biosynthesis via heterologous synthesis of intermediates and analogs. J. Biol. Chem. 285, 41412-41421.   DOI
14 Basha, W., Kitagawa, R., Uhara, M., Imazu, H., Uechi, K. and Tanaka, J. (2005) Geldanamycin, a potent and specific inhibitor of Hsp90, inhibits gene expression and replication of human cytomegalovirus. Antivir. Chem. Chemother. 16, 135-146.   DOI
15 Zur Wiesch, P. A., Kouyos, R., Engelstadter, J., Regoes, R. R. and Bonhoeffer, S. (2011) Population biological principles of drug-resistance evolution in infectious diseases. Lancet Infect. Dis. 11, 236-247.   DOI
16 Ahn, E. K., Yoon, H. K., Jee, B. K., Ko, H. J., Lee, K. H., Kim, H. J. and Lim, Y. (2008) COX-2 expression and inflammatory effects by diesel exhaust particles in vitro and in vivo. Toxicol. Lett. 176, 178-187.   DOI
17 al-Nakib, W. and Tyrrell, D. A. (1992) Drugs against rhinoviruses. J. Antimicrob. Chemother. 30, 115-117.   DOI
18 Atretkhany, K. N. and Drutskaya, M. S. (2016) Myeloid-derived suppressor cells and proinflammatory cytokines as targets for cancer therapy. Biochemistry Mosc. 81, 1274-1283.   DOI
19 Bartlett, N. W., Walton, R. P., Edwards, M. R., Aniscenko, J., Caramori, G., Zhu, J. et al. (2008) Mouse models of rhinovirus-induced disease and exacerbation of allergic airway inflammation. Nat. Med. 14, 199-204.   DOI
20 Brenner, B. G. and Wainberg, M. A. (1999) Heat shock protein-based therapeutic strategies against human immunodeficiency virus type 1 infection. Infect. Dis. Obstet. Gynecol. 7, 80-90.
21 Burch, A. D. and Weller, S. K. (2005) Herpes simplex virus type 1 DNA polymerase requires the mammalian chaperone hsp90 for proper localization to the nucleus. J. Virol. 79, 10740-10749.   DOI
22 Gern, J. E. and Busse, W. W. (1999) Association of rhinovirus infections with asthma. Clin. Microbiol. Rev. 12, 9-18.   DOI
23 Chatterjee, A., Dimitropoulou, C., Drakopanayiotakis, F., Antonova, G., Snead, C., Cannon, J., Venema, R. C. and Catravas, J. D. (2007) Heat shock protein 90 inhibitors prolong survival, attenuate inflammation, and reduce lung injury in murine sepsis. Am. J. Respir. Crit. Care Med. 176, 667-675.   DOI
24 Choe, H., Cho, H., Ko, H. J. and Lee, J. (2017) Total synthesis of (+)-pochonin D and (+)-monocillin ii via chemo- and regioselective intramolecular nitrile oxide cycloaddition. Org. Lett. 19, 6004-6007.   DOI
25 Geller, R., Andino, R. and Frydman, J. (2013) Hsp90 inhibitors exhibit resistance-free antiviral activity against respiratory syncytial virus. PLoS ONE 8, e56762.   DOI
26 Geller, R., Taguwa, S. and Frydman, J. (2012) Broad action of Hsp90 as a host chaperone required for viral replication. Biochim. Biophys. Acta 1823, 698-706.   DOI
27 Geller, R., Vignuzzi, M., Andino, R. and Frydman, J. (2007) Evolutionary constraints on chaperone-mediated folding provide an antivi-ral approach refractory to development of drug resistance. Genes Dev. 21, 195-205.   DOI
28 Hellwig, V., Mayer-Bartschmid, A., Muller, H., Greif, G., Kleymann, G., Zitzmann, W., Tichy, H. V. and Stadler, M. (2003) Pochonins A-F, new antiviral and antiparasitic resorcylic acid lactones from Pochonia chlamydosporia var. catenulata. J. Nat. Prod. 66, 829-837.   DOI
29 Hsu, H. Y., Wu, H. L., Tan, S. K., Li, V. P., Wang, W. T., Hsu, J. and Cheng, C. H. (2007) Geldanamycin interferes with the 90-kDa heat shock protein, affecting lipopolysaccharide-mediated interleukin-1 expression and apoptosis within macrophages. Mol. Pharmacol. 71, 344-356.   DOI
30 Jeisy-Scott, V., Davis, W. G., Patel, J. R., Bowzard, J. B., Shieh, W. J., Zaki, S. R., Katz, J. M. and Sambhara, S. (2011) Increased MDSC accumulation and Th2 biased response to influenza A virus infection in the absence of TLR7 in mice. PLoS ONE 6, e25242.   DOI
31 Li, Y., Zhang, T., Schwartz, S. J. and Sun, D. (2009) New developments in Hsp90 inhibitors as anti-cancer therapeutics: mechanisms, clinical perspective and more potential. Drug Resist. Updat. 12, 17-27.   DOI
32 Kampmueller, K. M. and Miller, D. J. (2005) The cellular chaperone heat shock protein 90 facilitates Flock House virus RNA replication in Drosophila cells. J. Virol. 79, 6827-6837.   DOI
33 Kneyber, M. C., Moll, H. A. and de Groot, R. (2000) Treatment and prevention of respiratory syncytial virus infection. Eur. J. Pediatr. 159, 399-411.   DOI
34 Ledford, R. M., Collett, M. S. and Pevear, D. C. (2005) Insights into the genetic basis for natural phenotypic resistance of human rhinoviruses to pleconaril. Antiviral Res. 68, 135-138.   DOI
35 Li, Y. H., Tao, P. Z., Liu, Y. Z. and Jiang, J. D. (2004) Geldanamycin, a ligand of heat shock protein 90, inhibits the replication of herpes simplex virus type 1 in vitro. Antimicrob. Agents Chemother. 48, 867-872.   DOI
36 Liebhart, J., Cembrzynska-Nowak, M., Bienkowska, M., Liebhart, E., Dobek, R., Zaczynska, E., Panaszek, B., Obojski, A. and Malolepszy, J. (2002) Relevance of the selected cytokine release (TNF-alpha, IL-6, IFN-gamma, and IFN-alpha) to the exacerbation of bronchial asthma from airway mycotic infections. Predominant role of TFN-alpha? J. Investig. Allergol. Clin. Immunol. 12, 182-191.
37 Jartti, T. and Korppi, M. (2011) Rhinovirus-induced bronchiolitis and asthma development. Pediatr. Allergy Immunol. 22, 350-355.   DOI
38 Moulin, E., Zoete, V., Barluenga, S., Karplus, M. and Winssinger, N. (2005) Design, synthesis, and biological evaluation of HSP90 inhibitors based on conformational analysis of radicicol and its analogues. J. Am. Chem. Soc. 127, 6999-7004.   DOI
39 Molinos-Quintana, A., Perez-de Soto, C., Gomez-Rosa, M., Perez-Simon, J. A. and Perez-Hurtado, J. M. (2013) Intravenous ribavirin for respiratory syncytial viral infections in pediatric hematopoietic SCT recipients. Bone Marrow Transplant. 48, 265-268.   DOI
40 Momose, F., Naito, T., Yano, K., Sugimoto, S., Morikawa, Y. and Nagata, K. (2002) Identification of Hsp90 as a stimulatory host factor involved in influenza virus RNA synthesis. J. Biol. Chem. 277, 45306-45314.   DOI
41 Nagy, P. D., Wang, R. Y., Pogany, J., Hafren, A. and Makinen, K. (2011) Emerging picture of host chaperone and cyclophilin roles in RNA virus replication. Virology 411, 374-382.   DOI
42 Nakagawa, S., Umehara, T., Matsuda, C., Kuge, S., Sudoh, M. and Kohara, M. (2007) Hsp90 inhibitors suppress HCV replication in replicon cells and humanized liver mice. Biochem. Biophys. Res. Commun. 353, 882-888.   DOI
43 Neckers, L. and Workman, P. (2012) Hsp90 molecular chaperone inhibitors: are we there yet? Clin. Cancer Res. 18, 64-76.   DOI
44 Park, S. H., Song, J. H., Kim, T., Shin, W. S., Park, G. M., Lee, S., Kim, Y. J., Choi, P., Kim, H., Kim, H. S., Kwon, D. H., Choi, H. J. and Ham, J. (2012) Anti-human rhinoviral activity of polybromocatechol compounds isolated from the rhodophyta, Neorhodomela aculeata. Mar. Drugs 10, 2222-2233.   DOI
45 Rincon, M. and Irvin, C. G. (2012) Role of IL-6 in asthma and other inflammatory pulmonary diseases. Int. J. Biol. Sci. 8, 1281-1290.   DOI