• Title/Summary/Keyword: human physiological mechanism

Search Result 191, Processing Time 0.03 seconds

Literary Therapeutic Mechanism Analysis in which the Rated Sijo is Encoded as a Battery of Life

  • Park, In-Kwa
    • International Journal of Advanced Culture Technology
    • /
    • v.4 no.4
    • /
    • pp.45-50
    • /
    • 2016
  • This is a humanistic study to trace phenomena logically the comprehensive therapeutic mechanism of the human body which is coded by the smart emotion of the rated signal conveyed by the Rated Sijo. The Gestalt, which is structured in the form of therapeutic metastasis conveyed by sentences, is intended to embody the principle of human response. So, this researcher explored the metastatic structure toward Gestalt of original human being through the passage of foreground and background by ergonomic and chemical structure. In the meantime, this researcher focused on revealing the structure of the field of existence by the symbol system in which the therapeutic mechanism of the human body is embodied. As a result, the basic framework of Gestalt literary therapy, which contributes to the improvement of the Quality of Life metaphorized as a mechanism of the symbol system by the metastasis of literary therapy or the electrical operation of the human body. As a result, the human body as a conductor through literature has turned out to be an original Gestalt structure pursued by literature. In addition, it was analyzed that the human body would accept signals such as emotions and Rated Emotions planted in the sentence, and synapse them into the human physiological psycho analytical symbol system. Therefore, it has been confirmed possibility that human existent environment and trauma are separated from the whole universe can push fully implement therapeutic techniques toward totalization by a combination of literary devices, especially appropriate electric signal combination of the Rated Sijo.

Safety and antifatigue effect of Korean Red Ginseng capsule: A randomized, double-blind and placebo-controlled clinical trial

  • Yang, Yi;Wang, Hong;Zhang, Ming;Shi, Mengxue;Yang, Cailing;Ni, Qiang;Wang, Qi;Li, Jing;Wang, Xuemei;Zhang, Chen;Li, Zhi
    • Journal of Ginseng Research
    • /
    • v.46 no.4
    • /
    • pp.543-549
    • /
    • 2022
  • Background: In physical activity or labor, the human body is in a state of high intensity stress, and all parts or physiological functions of the body respond positively to maintain or balance the need for movement. The human body has many physiological changes in the process of movement, and fatigue is the external manifestation of various complex changes inside the human body. Fatigue is also a physiological mechanism of self-protection after the body reaches a certain level of activity, which can prevent the occurrence of life-threatening excessive functional failure. The generation of fatigue is a very complex process, and its mechanism has not been concluded yet. Therefore, it is an important work to search and screen the effective components of natural plants that have anti-fatigue effect and to explore their mechanism. Methods: This was a 8-week, randomized, double-blind, placebo-controlled clinical trial. A total of 110 subjects who passed physical examination were included according to the scheme design, and randomly divided into a test group which was given KRG and a placebo control group. The calculation is carried out according to the standard of sub-high-intensity exercise test. Results: There was no adverse effect on safety index of subjects after taking red ginseng capsule. After KRG treatment, subjective strength grade is significant lower than placebo treatment. Blood lactic acid content is significantly get lower after trial in KRG group, and significant lower than placebo group. Creatine phosphokinase(CK) content is significantly get lower after trial in KRG group, and significant lower than placebo group. Conclusion: According to the criterion in the test scheme, the result shows that KRG is helpful on relieving physical fatigue.

Human Physiological Models of Insomnia (불면증의 생리학적 모델)

  • Sim, Hyun-Bo;Yu, Bum-Hee
    • Sleep Medicine and Psychophysiology
    • /
    • v.16 no.1
    • /
    • pp.5-9
    • /
    • 2009
  • Relatively little is known about the neurobiology of insomnia, despite its wide prevalence and broad medical impact. Although much is still to be learned about the pathophysiology of the disorder, identification, systematic assessment, and appropriate treatment are clearly beneficial to patients. Recent research, using quantitative EEG, polysomnography (PSG), multiple sleep latency test (MSLT) and neuroimaging techniques, suggests that some broad areas can be identified as possible pathophysiological models. Sleep-wake homeostat model hypothesizes a failure in homeostatic regulation of sleep, an attenuated increase in sleep drive with time awake, and/or defective sensing of sleep need. Circadian clock model hypothesizes a dysfunctional circadian clock, resulting in changes in the timing of sleep-wake propensity that are incompatible with normal sleep. Intrinsic sleep-wake state mechanism model suggests that abnormal function of insomnia comprises the systems responsible for expression of the sleep states themselves. Extrinsic over-ride mechanism (stress-response) model suggests that insomnia reflects the consequences of overactivity of one of the systems considered "extrinsic" to normal sleep-wake control. Many current therapies for insomnia are based on these physiological models. Several attempts have been made to create a physiological model that would explain this disorder and could be used as a foundation for treatment. However, it appeared that no model can fully explain and clarify all aspects of insomnia. Future research should be necessary to expand our knowledge on the biological dimensions of insomnia.

  • PDF

Canonical Correlation of 3D Visual Fatigue between Subjective and Physiological Measures

  • Won, Myeung Ju;Park, Sang In;Whang, Mincheol
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.6
    • /
    • pp.785-791
    • /
    • 2012
  • Objective: The aim of this study was to investigate the correlation between 3D visual fatigue and physiological measures by canonical correlation analysis enabling to categorical correlation. Background: Few studies have been conducted to investigate the physiological mechanism underlying the visual fatigue caused by processing 3D information which may make the cognitive mechanism overloaded. However, even the previous studies lack validation in terms of the correlation between physiological variables and the visual fatigue. Method: 9 Female and 6 male subjects with a mean age of $22.53{\pm}2.55$ voluntarily participated in this experiment. All participants were asked to report how they felt about their health sate at after viewing 3D. In addition, Low & Hybrid measurement test(Event Related Potential, Steady-state Visual Evoked Potential) and for evaluating cognitive fatigue before and after viewing 3D were performed. The physiological signal were measured with subjective fatigue evaluation before and after in watching the 3D content. For this study suggesting categorical correlation, all measures were categorized into three sets such as included Visual Fatigue set(response time, subjective evaluation), Autonomic Nervous System set(PPG frequency, PPG amplitude, HF/LF ratio), Central Nervous System set(ERP amplitude P4, O1, O2, ERP latency P4, O1, O2, SSVEP S/N ratio P4, O1, O2). Then the correlation of three variables sets, canonical correlation analysis was conducted. Results: The results showed a significant correlation between visual fatigue and physiological measures. However, different variables of visual fatigue were highly correlated to respective HF/LF ratio and to ERP latency(O2). Conclusion: Response time was highly correlated to ERP latency(O2) while the subjective evaluation was to HF/LF ratio. Application: This study may provide the most significant variables for the quantitative evaluation of visual fatigue using HF/LF ratio and ERP latency based human performance and subjective fatigue.

Mechanism of Human Endogenous Retrovirus (HERV) in Inflammatory Response (인간 내생 레트로바이러스(Human Endogenous Retrovirus, HERV)의 염증반응 조절 기작)

  • Ko, Eun-Ji;Cha, Hee-Jae
    • Journal of Life Science
    • /
    • v.31 no.8
    • /
    • pp.771-777
    • /
    • 2021
  • Human endogenous retroviruses (HERVs) were inserted into the human genome millions of years ago but they are currently inactive and non-infectious due to recombinations, deletions, and mutations after insertion into the host genome. Nonetheless, recent studies have shown that HERV-derived elements are actually involved in physiological phenomena and certain diseases including cancers. Among the various physiological phenomena related to HERV-derived elements, it is necessary to focus on inflammatory response. HERV-derived elements have been reported to be directly involved in various inflammatory diseases, including autoimmune diseases such as rheumatoid arthritis, multiple sclerosis, amyotrophic lateral sclerosis, and Sjogren's syndrome. As a mechanism for regulating inflammation through HERV-derived elements, the possibility that HERV-derived elements may cause nonspecific innate immune processes and that HERV-derived RNA or proteins may cause selective signaling mechanisms through specific receptors can be considered. However, the mechanism through which HERV-derived elements regulate inflammatory response, such as how silent HERV elements are activated in inflammatory response and what factors and signaling mechanisms are involved in HERV-derived elements, have not been identified to date, making it difficult to study the onset of HERV-related inflammatory disease. In this review, we introduce HERV-related autoimmune diseases and propose the mechanisms of HERV-derived elements at the molecular level of HERV in inflammatory response.

Studies on the Physiological and Biochemical Effects of Korean Ginseng (고려인삼의 생리.생화학적 효과연구)

  • 정노팔;진승하
    • Journal of Ginseng Research
    • /
    • v.20 no.4
    • /
    • pp.431-471
    • /
    • 1996
  • Korean ginseng has been thought and used the most very important medicinal herb among the oriental medicinal drugs for thounds of years Korean ginseng had many ingredients such as tripenoid saponins. Nitrogen compounds, polysaccharides, polyacetylenic compounds and lipid compounds. Korean ginseng has wide effects in the various systems of human such as nervous system. Vascular system. Digestive system. endocrine system, immune system. etc. Many researchess who were interested in the biological effects of Korean ginseng have concerned the tripenoid saponins among the components of ginseng and carried out to find the effects of ginseng using the various experimental system. From their results, it was unveiled many effects of Korean ginseng gractually in the experimental systems and shown that Korean ginseng has various effects in the biological system. But recent studies has been carried out to the difference ginseng components, besides ginseng saponin thought to have various effects in biological systems. Also the functional mechanism of ginseng in the biological system is limited but the basic research to elucidate the mysterious effects of ginseng has been preferred. In this review, we focus on biological effects of Korean ginseng. Especially physiological and biochemical aspects in biological systems.

  • PDF

Seed of Trichosanthes kirilowii MAXIM Inhibits TNF-${\alpha}$-induced Migration In Human Aortic Smooth Muscle Cells Via MMP-9 Inhibition

  • Kim, Jai-Eun;Choi, Dall-Yeong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.2
    • /
    • pp.480-487
    • /
    • 2009
  • Atherosclerosis, slow progressing inflammatory lesion in arteries, is one of the major causes of cardiovascular diseases. As mortality due to cardiovascular disease keeps increasing in Korea, researches on pathological mechanism of atherosclerosis may be beneficial in fighting against cardiovascular diseases. It is known that migration and MMP-9 secretion of Vascular Smooth Muscle Cell(VSMC) play a significant part in pathogenesis of atherosclerosis, although detailed mechanism of entire process is not clarified. We investigated whether the seeds of Trichosanthes kirilowii maxim (TS), inhibit migration and MMP-9 production of HASMC(human aortic SMC), which were induced by TNF-${\alpha}$ treatment. Migration assay showed that TS inhibited the migration of HASMC induced by TNF-${\alpha}$, in dose dependent manner. Also by Zymography MMP-9 production of HASMC was found to be reduced by TS, both in time and in dose dependent manner. Western blotting results suggest TS suppress activity of MAPkinases.

Toxicological Mechanism of Endocrine Disrupting Chemicals: Is Estrogen Receptor Involved?

  • Jeung, Eui-Bae;Choi, Kyung-Chul
    • Toxicological Research
    • /
    • v.26 no.4
    • /
    • pp.237-243
    • /
    • 2010
  • Endocrine disrupting chemicals (EDCs) have been shown to interfere with physiological systems, i.e., adversely affecting hormone balance (endocrine system), or disrupting normal function, in the female and male reproductive organs. Although endocrine disruption is a global concern for human health, its impact and significance and the screening strategy for detecting these synthetic or man-made chemicals are not clearly understood in female and male reproductive functions. Thus, in this review, we summarize the interference of environmental EDCs on reproductive development and function, and toxicological mechanism(s) of EDCs in in vitro and in vivo models of male and female reproductive system. In addition, this review highlights the effect of exposure to multiple EDCs on reproductive functions, and brings attention to their toxicological mechanism(s) through estrogen receptors.

The Impact of Gut Microbiota in Human Health and Diseases: Implication for Therapeutic Potential

  • Ha, Eun-Mi
    • Biomolecules & Therapeutics
    • /
    • v.19 no.2
    • /
    • pp.155-173
    • /
    • 2011
  • Humans have and hold 100 trillion intestinal bacteria that are essential for health. For millions of years human-microorganisms interaction has co-evolved, and maintained close symbiotic relationship. Gut bacteria contributes to human health and metabolism, and humans provides the optimum nutrition-rich environment for bacteria. What is the mechanism of the host distinguishing the intestinal bacteria as its cohabiting partner and what kind of benefits does the gut microbiota provide the human are the fundamental questions to be asked and solved in order to make human life a higher quality. This review explains the physiological relationship and mutualism between the host and gut microorganism, and highlights the potential therapeutic approach for treating diseases, maintaining and improving health based on these correlations.