Browse > Article
http://dx.doi.org/10.5487/TR.2010.26.4.237

Toxicological Mechanism of Endocrine Disrupting Chemicals: Is Estrogen Receptor Involved?  

Jeung, Eui-Bae (Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University)
Choi, Kyung-Chul (Laboratory of Veterinary Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University)
Publication Information
Toxicological Research / v.26, no.4, 2010 , pp. 237-243 More about this Journal
Abstract
Endocrine disrupting chemicals (EDCs) have been shown to interfere with physiological systems, i.e., adversely affecting hormone balance (endocrine system), or disrupting normal function, in the female and male reproductive organs. Although endocrine disruption is a global concern for human health, its impact and significance and the screening strategy for detecting these synthetic or man-made chemicals are not clearly understood in female and male reproductive functions. Thus, in this review, we summarize the interference of environmental EDCs on reproductive development and function, and toxicological mechanism(s) of EDCs in in vitro and in vivo models of male and female reproductive system. In addition, this review highlights the effect of exposure to multiple EDCs on reproductive functions, and brings attention to their toxicological mechanism(s) through estrogen receptors.
Keywords
Endocrine disrupting chemicals; estrogen receptor; toxicological mechanism;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Qin, C., Samudio, I., Ngwenya, S. and Safe, S. (2004). Estrogendependent regulation of ornithine decarboxylase in breast cancer cells through activation of nongenomic cAMP-dependent pathways. Mol. Carcinog., 40, 160-170.   DOI   ScienceOn
2 Revelli, A., Massobrio, M. and Tesarik, J. (1998). Nongenomic actions of steroid hormones in reproductive tissues. Endocr. Rev., 19, 3-17.   DOI   ScienceOn
3 Roy, D., Angelini, N.L. and Belsham, D.D. (1999). Estrogen directly respresses gonadotropin-releasing hormone (GnRH) gene expression in estrogen receptor-alpha (ERalpha)- and ERbeta-expressing GT1-7 GnRH neurons. Endocrinology, 140, 5045-5053.   DOI   ScienceOn
4 Levin, E.R. (2005). Integration of the extranuclear and nuclear actions of estrogen. Mol. Endocrinol., 19, 1951-1959.   DOI   ScienceOn
5 Levine, J.E. (1997). New concepts of the neuroendocrine regulation of gonadotropin surges in rats. Biol. Reprod., 56, 293-302.   DOI   ScienceOn
6 Lieberman, M.E., Maurer, R.A., Claude, P. and Gorski, J. (1982). Prolactin synthesis in primary cultures of pituitary cells: regulation by estradiol. Mol. Cell. Endocrinol., 25, 277-294.   DOI   ScienceOn
7 MacLusky, N.J. and Naftolin, F. (1981). Sexual differentiation of the central nervous system. Science, 211, 1294-1302.   DOI
8 Marino, M., Acconcia, F. and Ascenzi, P. (2005). Estrogen receptor signalling: bases for drug actions. Curr. Drug. Targets. Immune. Endocr. Metabol. Disord., 5, 305-314.   DOI   ScienceOn
9 Marino, M., Galluzzo, P. and Ascenzi, P. (2006). Estrogen signaling multiple pathways to impact gene transcription. Curr. Genomics, 7, 497-508.   DOI
10 Dang, V.H., Choi, K.C., Hyun, S.H. and Jeung, E.B. (2007b). Induction of uterine calbindin-D9k through an estrogen receptor-dependent pathway following single injection with xenobiotic agents in immature rats. J. Toxicol. Environ. Health A, 70, 171-182.   DOI   ScienceOn
11 Dang, V.H., Choi, K.C. and Jeung, E.B. (2007c). Tetrabromodiphenyl ether (BDE 47) evokes estrogenicity and calbindin-D9k expression through an estrogen receptor-mediated pathway in the uterus of immature rats. Toxicol. Sci., 97, 504-511.   DOI   ScienceOn
12 Dang, V.H., Nguyen, T.H., Choi, K.C. and Jeung, E.B. (2007d). A calcium-binding protein, calbindin-D9k, is regulated through an estrogen-receptor mediated mechanism following xenoestrogen exposure in the GH3 cell line. Toxicol. Sci., 98, 408-415.   DOI   ScienceOn
13 Dang, V.H., Choi, K.C. and Jeung, E.B. (2009a). Estrogen receptors are involved in xenoestrogen induction of growth hormone in the rat pituitary gland. J. Reprod. Dev., 55, 206-213.   DOI   ScienceOn
14 Allen, D.L., Mitchner, N.A., Uveges, T.E., Nephew, K.P., Khan, S. and Ben-Jonathan, N. (1997). Cell-specific induction of c-fos expression in the pituitary gland by estrogen. Endocrinology, 138, 2128-2135.   DOI   ScienceOn
15 An, B.S., Choi, K.C., Kang, S.K., Hwang, W.S. and Jeung, E.B. (2003). Novel Calbindin-D(9k) protein as a useful biomarker for environmental estrogenic compounds in the uterus of immature rats. Reprod Toxicol., 17, 311-319.   DOI   ScienceOn
16 Aranda, A. and Pascual, A. (2001). Nuclear hormone receptors and gene expression. Physiol. Rev., 81, 1269-1304.   DOI
17 Arnold, A.P. and Gorski, R.A. (1984). Gonadal steroid induction of structural sex differences in the central nervous system. Annu. Rev. Neurosci., 7, 413-442.   DOI   ScienceOn
18 Vo, T.T., Jung, E.M., Dang, V.H., Yoo, Y.M., Choi, K.C., Yu, F.H. and Jeung, E.B. (2009b). Di-(2 ethylhexyl) phthalate and flutamide alter gene expression in the testis of immature male rats. Reprod. Biol. Endocrinol., 7, 104.   DOI   ScienceOn
19 Turner, R.T., Riggs, B.L. and Spelsberg, T.C. (1994). Skeletal effects of estrogen. Endocr. Rev., 15, 275-300.
20 Vo, T.T., Jung, E.M., Dang, V.H., Jung, K., Baek, J., Choi, K.C. and Jeung, E.B. (2009a). Differential effects of flutamide and di-(2-ethylhexyl) phthalate on male reproductive organs in a rat model. J. Reprod. Dev., 55, 400-411.   DOI   ScienceOn
21 Waring, R.H. and Harris, R.M. (2005). Endocrine disrupters: a human risk? Mol. Cell. Endocrinol., 244, 2-9.   DOI   ScienceOn
22 Watanabe, H., Suzuki, A., Kobayashi, M., Takahashi, E., Itamoto, M., Lubahn, D.B., Handa, H. and Iguchi, T. (2003). Analysis of temporal changes in the expression of estrogen-regulated genes in the uterus. J. Mol. Endocrinol., 30, 347-358.   DOI   ScienceOn
23 Watson, C.S., Bulayeva, N.N., Wozniak, A.L. and Alyea, R.A. (2007). Xenoestrogens are potent activators of nongenomic estrogenic responses. Steroids, 72, 124-134.   DOI   ScienceOn
24 Watters, J.J., Chun, T.Y., Kim, Y.N., Bertics, P.J. and Gorski, J. (2000). Estrogen modulation of prolactin gene expression requires an intact mitogen-activated protein kinase signal transduction pathway in cultured rat pituitary cells. Mol. Endocrinol., 14, 1872-1881.   DOI   ScienceOn
25 Williams, K., McKinnell, C., Saunders, P.T., Walker, M., Fisher, J.S., Turner, K.J., Atanassova, N. and Sharpe, M. (2001). Neonatal exposure to potent and environmental oestrogens and abnormalities of the male reproductive system in the rat: evidence for importance of the androgen-oestrogen balance and assessment of the relevance to man. Hum. Reprod. Update, 7, 236-247.   DOI   ScienceOn
26 Nilsson, S., Makela, S., Treuter, E., Tujague, M., Thomsen, J., Andersson, G., Enmark, E., Pettersson, K., Warner, M. and Gustafsson, J.A. (2001). Mechanisms of estrogen action. Physiol. Rev., 81, 1535-1565.   DOI
27 Micevych, P.E. and Mermelstein, P.G. (2008). Membrane estrogen receptors acting through metabotropic glutamate receptors: an emerging mechanism of estrogen action in brain. Mol. Neurobiol., 38, 66-77.   DOI   ScienceOn
28 Mitchner, N.A., Garlick, C., Steinmetz, R.W. and Ben-Jonathan, N. (1999). Differential regulation and action of estrogen receptors alpha and beta in GH3 cells. Endocrinology, 140, 2651-2658.   DOI   ScienceOn
29 Mosselman, S., Polman, J. and Dijkema, R. (1996). ER beta: identification and characterization of a novel human estrogen receptor. FEBS Lett., 392, 49-53.   DOI   ScienceOn
30 Hall, J.M. and McDonnell, D.P. (2005). Coregulators in nuclear estrogen receptor action: from concept to therapeutic targeting. Mol. Interv., 5, 343-357.   DOI   ScienceOn
31 Hess, R.A., Bunick, D., Lee, K.H., Bahr, J., Taylor, J.A., Korach, K.S. and Lubahn, D.B. (1997). A role for oestrogens in the male reproductive system. Nature, 390, 509-512.   DOI   ScienceOn
32 Hong, E., Choi, K.-C. and Jeung, E.-B. (2003). Maternal-fetal transfer of endocrine disruptors in the induction of Calbindin-D9k mRNA and protein during pregnancy in rat model. Mol. Cell. Endocrinol., 212, 63-72.   DOI   ScienceOn
33 Hoyer, P.B. (2001). Reproductive toxicology: current and future directions. Biochem. Pharmacol., 62, 1557-1564.   DOI   ScienceOn
34 Katzenellenbogen, J.A. and Katzenellenbogen, B.S. (1996). Nuclear hormone receptors: ligand-activated regulators of transcription and diverse cell responses. Chem. Biol., 3, 529-536.   DOI   ScienceOn
35 Sharpe. (1998b). Environmental oestrogen and male infertility. Pure. Appl. Chem., 70, 1685-1701.   DOI   ScienceOn
36 Wilson, M.E., Price, R.H., Jr. and Handa, R.J. (1998). Estrogen receptor-beta messenger ribonucleic acid expression in the pituitary gland. Endocrinology, 139, 5151-5156.   DOI   ScienceOn
37 Sarkar, D.K., Kim, K.H. and Minami, S. (1992). Transforming growth factor-beta 1 messenger RNA and protein expression in the pituitary gland: its action on prolactin secretion and lactotropic growth. Mol. Endocrinol., 6, 1825-1833.   DOI   ScienceOn
38 Sharpe. (1998a). The roles of oestrogen in male. Trends Endocrinol. Metab., 9, 371-377.   DOI   ScienceOn
39 Steinmetz, R., Brown, N.G., Allen, D.L., Bigsby, R.M. and Ben-Jonathan, N. (1997). The environmental estrogen bisphenol A stimulates prolactin release in vitro and in vivo. Endocrinology, 138, 1780-1786.   DOI   ScienceOn
40 Tinnanooru, P., Dang, V.H., Nguyen, T.H., Lee, G.S., Choi, K.C. and Jeung, E.B. (2008). Estrogen regulates the localization and expression of calbindin-D9k in the pituitary gland of immature male rats via the ERalpha-pathway. Mol. Cell. Endocrinol., 285, 26-33.   DOI   ScienceOn
41 Tokunaga, E., Kimura, Y., Mashino, K., Oki, E., Kataoka, A., Ohno, S., Morita, M., Kakeji, Y., Baba, H. and Maehara, Y. (2006). Activation of PI3K/Akt signaling and hormone resistance in breast cancer. Breast Cancer, 13, 137-144.   DOI
42 Toppari, J., Larsen, J.C., Christiansen, P., Giwercman, A., Grandjean, P., Guillette, L.J., Jr., Jegou, B., Jensen, T.K., Jouannet, P., Keiding, N., Leffers, H., McLachlan, J.A., Meyer, O., Muller, J., Rajpert-De Meyts, E., Scheike, T., Sharpe, R., Sumpter, J. and Skakkebaek, N.E. (1996). Male reproductive health and environmental xenoestrogens. Environ. Health Perspect, 104 Suppl 4, 741-803.
43 Laws, S.C., Carey, S.A., Ferrell, J.M., Bodman, G.J. and Cooper, R.L. (2000). Estrogenic activity of octylphenol, nonylphenol, bisphenol A and methoxychlor in rats. Toxicol. Sci., 54, 154-167.   DOI   ScienceOn
44 Keefer, D.A., Stumpf, W.E. and Petrusz, P. (1976). Quantitative autoradiographic assessment of 3H-estradiol uptake in immunocytochemically characterized pituitary cells. Cell. Tissue. Res., 166, 25-35.   DOI
45 Kelly, M.J. and Levin, E.R. (2001). Rapid actions of plasma membrane estrogen receptors. Trends Endocrinol. Metab., 12, 152-156.   DOI   ScienceOn
46 Kuiper, G.G., Enmark, E., Pelto-Huikko, M., Nilsson, S. and Gustafsson, J.A. (1996). Cloning of a novel receptor expressed in rat prostate and ovary. Proc. Natl. Acad. Sci. USA, 93, 5925-5930.   DOI
47 Leung, K.C., Johannsson, G., Leong, G.M. and Ho, K.K. (2004). Estrogen regulation of growth hormone action. Endocr. Rev., 25, 693-721.   DOI   ScienceOn
48 Dang, V.H., Nguyen, T.H., Lee, G.S., Choi, K.C. and Jeung, E.B. (2009b). In vitro exposure to xenoestrogens induces growth hormone transcription and release via estrogen receptor-dependent pathways in rat pituitary GH3 cells. Steroids, 74, 707-714.   DOI   ScienceOn
49 Dang, V.H., Choi, K.C. and Jeung, E.B. (2010). Membrane-impermeable estrogen is involved in regulation of calbindin-D9k expression via non-genomic pathways in a rat pituitary cell line, GH3 cells. Toxicol. In Vitro, In press.
50 Daston, G.P., Cook, J.C. and Kavlock, R.J. (2003). Uncertainties for endocrine disrupters: our view on progress. Toxicol. Sci., 74, 245-252.   DOI   ScienceOn
51 Dos Santos, E.G., Dieudonne, M.N., Pecquery, R., Le Moal, V., Giudicelli, Y. and Lacasa, D. (2002). Rapid nongenomic E2 effects on p42/p44 MAPK, activator protein-1, and cAMP response element binding protein in rat white adipocytes. Endocrinology, 143, 930-940.   DOI   ScienceOn
52 Paech, K., Webb, P., Kuiper, G.G., Nilsson, S., Gustafsson, J., Kushner, P.J. and Scanlan, T.S. (1997). Differential ligand activation of estrogen receptors ERalpha and ERbeta at AP1 sites. Science, 277, 1508-1510.   DOI   ScienceOn
53 Treeck, O., Pfeiler, G., Mitter, D., Lattrich, C., Piendl, G. and Ortmann, O. (2007). Estrogen receptor {beta}1 exerts antitumoral effects on SK-OV-3 ovarian cancer cells. J. Endocrinol., 193, 421-433.   DOI   ScienceOn
54 Turgeon, J.L. and Waring, D.W. (1981). Acute progesterone and 17 beta-estradiol modulation of luteinizing hormone secretion by pituitaries of cycling rats superfused in vitro. Endocrinology, 108, 413-419.   DOI   ScienceOn
55 Nishihara, E., Nagayama, Y., Inoue, S., Hiroi, H., Muramatsu, M., Yamashita, S. and Koji, T. (2000). Ontogenetic changes in the expression of estrogen receptor alpha and beta in rat pituitary gland detected by immunohistochemistry. Endocrinology, 141, 615-620.   DOI   ScienceOn
56 Park, S.H., Kim, K.Y., An, B.S., Choi, J.H., Jeung, E.B., Leung, P.C. and Choi, K.C. (2009). Cell growth of ovarian cancer cells is stimulated by xenoestrogens through an estrogen-dependent pathway, but their stimulation of cell growth appears not to be involved in the activation of the mitogen-activated protein kinases ERK-1 and p38. J. Reprod. Dev., 55, 23-29.   DOI   ScienceOn
57 Pelletier, G., Liao, N., Follea, N. and Govindan, M.V. (1988). Distribution of estrogen receptors in the rat pituitary as studied by in situ hybridization. Mol. Cell. Endocrinol., 56, 29-33.   DOI   ScienceOn
58 Pujol, P., Rey, J.M., Nirde, P., Roger, P., Gastaldi, M., Laffargue, F., Rochefort, H. and Maudelonde, T. (1998). Differential expression of estrogen receptor-alpha and -beta messenger RNAs as a potential marker of ovarian carcinogenesis. Cancer. Res., 58, 5367-5373.
59 Filardo, E.J. (2002). Epidermal growth factor receptor (EGFR) transactivation by estrogen via the G-protein-coupled receptor, GPR30: a novel signaling pathway with potential significance for breast cancer. J. Steroid. Biochem. Mol. Biol., 80, 231-238.   DOI   ScienceOn
60 Ellerkmann, E., Nagy, G.M. and Frawley, L.S. (1991). Rapid augmentation of prolactin cell number and secretory capacity by an estrogen-induced factor released from the neurointermediate lobe. Endocrinology, 129, 838-842.   DOI   ScienceOn
61 Filardo, E.J., Quinn, J.A., Frackelton, A.R., Jr. and Bland, K.I. (2002). Estrogen action via the G protein-coupled receptor, GPR30: stimulation of adenylyl cyclase and cAMP-mediated attenuation of the epidermal growth factor receptor-to-MAPK signaling axis. Mol. Endocrinol., 16, 70-84.   DOI   ScienceOn
62 Frasor, J., Barnett, D.H., Danes, J.M., Hess, R., Parlow, A.F. and Katzenellenbogen, B.S. (2003). Response-specific and ligand dose-dependent modulation of estrogen receptor (ER) alpha activity by ERbeta in the uterus. Endocrinology, 144, 3159-3166.   DOI   ScienceOn
63 Couse, J.F., Lindzey, J., Grandien, K., Gustafsson, J.A. and Korach, K.S. (1997). Tissue distribution and quantitative analysis of estrogen receptor-alpha (ERalpha) and estrogen receptorbeta (ERbeta) messenger ribonucleic acid in the wild-type and ERalpha-knockout mouse. Endocrinology, 138, 4613-4621.   DOI   ScienceOn
64 Crisp, T.M., Clegg, E.D., Cooper, R.L., Wood, W.P., Anderson, D.G., Baetcke, K.P., Hoffmann, J.L., Morrow, M.S., Rodier, D.J., Schaeffer, J.E., Touart, L.W., Zeeman, M.G. and Patel, Y.M. (1998). Environmental endocrine disruption: an effects assessment and analysis. Environ. Health Perspect, 106 Suppl 1, 11-56.   DOI
65 Dang, V.H., Choi, K.C., Hyun, S.H. and Jeung, E.B. (2007a). Analysis of gene expression profiles in the offspring of rats following maternal exposure to xenoestrogens. Reprod. Toxicol., 23, 42-54.   DOI   ScienceOn
66 Choi, K.C. and Jeung, E.B. (2003). The biomarker and endocrine disruptors in mammals. J. Reprod. Dev., 49, 337-345.   DOI   ScienceOn
67 Bulayeva, N.N., Gametchu, B. and Watson, C.S. (2004). Quantitative measurement of estrogen-induced ERK 1 and 2 activation via multiple membrane-initiated signaling pathways. Steroids, 69, 181-192.   DOI   ScienceOn
68 Bulayeva, N.N., Wozniak, A.L., Lash, L.L. and Watson, C.S. (2005). Mechanisms of membrane estrogen receptor-alphamediated rapid stimulation of Ca2+ levels and prolactin release in a pituitary cell line. Am. J. Physiol. Endocrinol. Metab., 288, E388-397.   DOI   ScienceOn
69 Charpentier, A.H., Bednarek, A.K., Daniel, R.L., Hawkins, K.A., Laflin, K.J., Gaddis, S., MacLeod, M.C. and Aldaz, C.M. (2000). Effects of estrogen on global gene expression: identification of novel targets of estrogen action. Cancer Res., 60, 5977-5983.
70 Cobb, M.H. and Goldsmith, E.J. (1995). How MAP kinases are regulated. J. Biol. Chem., 270, 14843-14846.   DOI   ScienceOn
71 Abney, T.O. and Myers, R.B. (1991). 17 beta-estradiol inhibition of Leydig cell regeneration in the ethane dimethylsulfonatetreated mature rat. J. Androl., 12, 295-304.