Browse > Article
http://dx.doi.org/10.5352/JLS.2021.31.8.771

Mechanism of Human Endogenous Retrovirus (HERV) in Inflammatory Response  

Ko, Eun-Ji (Department of Parasitology and Genetics, Kosin University College of Medicine)
Cha, Hee-Jae (Department of Parasitology and Genetics, Kosin University College of Medicine)
Publication Information
Journal of Life Science / v.31, no.8, 2021 , pp. 771-777 More about this Journal
Abstract
Human endogenous retroviruses (HERVs) were inserted into the human genome millions of years ago but they are currently inactive and non-infectious due to recombinations, deletions, and mutations after insertion into the host genome. Nonetheless, recent studies have shown that HERV-derived elements are actually involved in physiological phenomena and certain diseases including cancers. Among the various physiological phenomena related to HERV-derived elements, it is necessary to focus on inflammatory response. HERV-derived elements have been reported to be directly involved in various inflammatory diseases, including autoimmune diseases such as rheumatoid arthritis, multiple sclerosis, amyotrophic lateral sclerosis, and Sjogren's syndrome. As a mechanism for regulating inflammation through HERV-derived elements, the possibility that HERV-derived elements may cause nonspecific innate immune processes and that HERV-derived RNA or proteins may cause selective signaling mechanisms through specific receptors can be considered. However, the mechanism through which HERV-derived elements regulate inflammatory response, such as how silent HERV elements are activated in inflammatory response and what factors and signaling mechanisms are involved in HERV-derived elements, have not been identified to date, making it difficult to study the onset of HERV-related inflammatory disease. In this review, we introduce HERV-related autoimmune diseases and propose the mechanisms of HERV-derived elements at the molecular level of HERV in inflammatory response.
Keywords
Autoimmune disease; Human endogenous retrovirus (HERV); inflammation; inflammatory response; mechanism;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ko, E. J., Ock, M. S., Choi, Y. H., Iovanna, J. L., Mun, S., Han, K., Kim, H. S. and Cha, H. J. 2021. Human Endogenous Retrovirus (HERV)-K env gene knockout affects tumorigenic characteristics of nupr1 gene in DLD-1 colorectal cancer cells. Int. J. Mol. Sci. 22, 3941.   DOI
2 Ko, E. J., Song, K. S., Ock, M. S., Choi, Y. H., Kim, S., Kim, H. S. and Cha, H. J. 2021. Expression profiles of Human Endogenous Retrovirus (HERV)-K and HERV-R Env proteins in various cancers. BMB Rep. 54, 368-373.   DOI
3 Laska, M. J., Troldborg, A., Hauge, E. M., Bahrami, S. and Stengaard-Pedersen, K. 2017. Human Endogenous Retroviral genetic element with immunosuppressive activity in both human autoimmune diseases and experimental arthritis. Arthritis Rheumatol. 69, 398-409.   DOI
4 Clerici, M., Fusi, M. L., Caputo, D., Guerini, F. R., Trabattoni, D., Salvaggio, A., Cazzullo, C. L., Arienti, D., Villa, M. L., Urnovitz, H. B. and Ferrante, P. 1999. Immune responses to antigens of human endogenous retroviruses in patients with acute or stable multiple sclerosis. J. Neuroimmunol. 99, 173-182.   DOI
5 Dean, B., Tawadros, N., Scarr, E. and Gibbons, A. S. 2010. Regionally-specific changes in levels of tumour necrosis factor in the dorsolateral prefrontal cortex obtained postmortem from subjects with major depressive disorder. J. Affect. Disord. 120, 245-248.   DOI
6 Grandi, N. and Tramontano, E. 2018. HERV envelope proteins: physiological role and pathogenic potential in cancer and autoimmunity. Front. Microbiol. 9, 462.   DOI
7 Groger, V. and Cynis, H. 2018. Human endogenous retroviruses and their putative role in the development of autoimmune disorders such as multiple sclerosis. Front. Microbiol. 9, 265.   DOI
8 Hahn, S., Ugurel, S., Hanschmann, K. M., Strobel, H., Tondera, C., Schadendorf, D., Lower, J. and Lower, R. 2008. Serological response to human endogenous retrovirus K in melanoma patients correlates with survival probability. AIDS Res. Hum. Retroviruses 24, 717-723.   DOI
9 Hishikawa, T., Ogasawara, H., Kaneko, H., Shirasawa, T., Matsuura, Y., Sekigawa, I., Takasaki, Y., Hashimoto, H., Hirose, S., Handa, S., Nagasawa, R. and Maruyama, N. 1997. Detection of antibodies to a recombinant gag protein derived from human endogenous retrovirus clone 4-1 in autoimmune diseases. Viral Immunol. 10, 137-147.   DOI
10 Dembny, P., Newman, A. G., Singh, M., Hinz, M., Szczepek, M., Kruger, C., Adalbert, R., Dzaye, O., Trimbuch, T., Wallach, T., Kleinau, G., Derkow, K., Richard, B. C., Schipke, C., Scheidereit, C., Stachelscheid, H., Golenbock, D., Peters, O., Coleman, M., Heppner, F. L., Scheerer, P., Tarabykin, V., Ruprecht, K., Izsvak, Z., Mayer, J. and Lehnardt, S. 2020. Human endogenous retrovirus HERV-K(HML-2) RNA causes neurodegeneration through Toll-like receptors. JCI Insight 5, e131093.   DOI
11 Stauffer, Y., Marguerat, S., Meylan, F., Ucla, C., Sutkowski, N., Huber, B., Pelet, T. and Conrad, B. 2001. Interferon-alpha-induced endogenous superantigen. a model linking environment and autoimmunity. Immunity 15, 591-601.   DOI
12 Ariza, M. E. and Williams, M. V. 2011. A human endogenous retrovirus K dUTPase triggers a TH1, TH17 cytokine response: does it have a role in psoriasis? J. Invest. Dermatol. 131, 2419-2427.   DOI
13 Li, M., Radvanyi, L., Yin, B., Rycaj, K., Li, J., Chivukula, R., Lin, K., Lu, Y., Shen, J., Chang, D. Z., Li, D., Johanning, G. L. and Wang-Johanning, F. 2017. Downregulation of Human Endogenous Retrovirus Type K (HERV-K) Viral env RNA in pancreatic cancer cells decreases cell proliferation and tumor growth. Clin. Cancer Res. 23, 5892-5911.   DOI
14 Balada, E., Vilardell-Tarres, M. and Ordi-Ros, J. 2010. Implication of human endogenous retroviruses in the development of autoimmune diseases. Int. Rev. Immunol. 29, 351-370.   DOI
15 Freimanis, G., Hooley, P., Ejtehadi, H. D., Ali, H. A., Veitch, A., Rylance, P. B., Alawi, A., Axford, J., Nevill, A., Murray, P. G. and Nelson, P. N. 2010. A role for human endogenous retrovirus-K (HML-2) in rheumatoid arthritis: investigating mechanisms of pathogenesis. Clin. Exp. Immunol. 160, 340-347.   DOI
16 Moyes, D. L., Martin, A., Sawcer, S., Temperton, N., Worthington, J., Griffiths, D. J. and Venables, P. J. 2005. The distribution of the endogenous retroviruses HERV-K113 and HERV-K115 in health and disease. Genomics 86, 337-341.   DOI
17 Wu, Z., Mei, X., Zhao, D., Sun, Y., Song, J., Pan, W. and Shi, W. 2015. DNA methylation modulates HERV-E expression in CD4+ T cells from systemic lupus erythematosus patients. J. Dermatol. Sci. 77, 110-116.   DOI
18 Kury, P., Nath, A., Creange, A., Dolei, A., Marche, P., Gold, J., Giovannoni, G., Hartung, H. P. and Perron, H. 2018. Human Endogenous Retroviruses in neurological diseases. Trends Mol. Med. 24, 379-394.   DOI
19 Douville, R., Liu, J., Rothstein, J. and Nath, A. 2011. Identification of active loci of a human endogenous retrovirus in neurons of patients with amyotrophic lateral sclerosis. Ann. Neurol. 69, 141-151.   DOI
20 Rodrigues, L. S., da Silva Nali, L. H., Leal, C. O. D., Sabino, E. C., Lacerda, E. M., Kingdon, C. C., Nacul, L. and Romano, C. M. 2019. HERV-K and HERV-W transcriptional activity in myalgic encephalomyelitis/chronic fatigue syndrome. Auto Immun. Highlights 10, 12.   DOI
21 Tarlinton, R., Wang, B., Morandi, E., Gran, B., Khaiboullin, T., Martynova, E., Rizvanov, A. and Khaiboullina, S. 2019. Differential expression of HERV-W in peripheral blood in multiple sclerosis and healthy patients in two different ethnic groups. Front. Pharmacol. 10, 1645.   DOI
22 Treger, R. S., Pope, S. D., Kong, Y., Tokuyama, M., Taura, M. and Iwasaki, A. 2019. The Lupus susceptibility locus Sgp3 encodes the suppressor of endogenous retrovirus expression SNERV. Immunity 50, 334-347.e9.   DOI
23 Wang-Johanning, F., Rycaj, K., Plummer, J. B., Li, M., Yin, B., Frerich, K., Garza, J. G., Shen, J., Lin, K., Yan, P., Glynn, S. A., Dorsey, T. H., Hunt, K. K., Ambs, S. and Johanning, G. L. 2012. Immunotherapeutic potential of anti-human endogenous retrovirus-K envelope protein antibodies in targeting breast tumors. J. Natl. Cancer Inst. 104, 189-210.   DOI
24 Boese, A., Sauter, M., Galli, U., Best, B., Herbst, H., Mayer, J., Kremmer, E., Roemer, K. and Mueller-Lantzsch, N. 2000. Human endogenous retrovirus protein cORF supports cell transformation and associates with the promyelocytic leukemia zinc finger protein. Oncogene 19, 4328-4336.   DOI
25 Yu, H. L., Zhao, Z. K. and Zhu, F. 2013. The role of human endogenous retroviral long terminal repeat sequences in human cancer (Review). Int. J. Mol. Med. 32, 755-762.   DOI
26 Rolland, A., Jouvin-Marche, E., Viret, C., Faure, M., Perron, H. and Marche, P. N. 2006. The envelope protein of a human endogenous retrovirus-W family activates innate immunity through CD14/TLR4 and promotes Th1-like responses. J. Immunol. 176, 7636-7644.   DOI
27 Li, W., Lee, M. H., Henderson, L., Tyagi, R., Bachani, M., Steiner, J., Campanac, E., Hoffman, D. A., von Geldern, G., Johnson, K., Maric, D., Morris, H. D., Lentz, M., Pak, K., Mammen, A., Ostrow, L., Rothstein, J. and Nath, A. 2015. Human endogenous retrovirus-K contributes to motor neuron disease. Sci. Transl. Med. 7, 307ra153.   DOI
28 Morozov, V. A., Morozov, A. V., Semaan, M. and Denner, J. 2012. Single mutations in the transmembrane envelope protein abrogate the immunosuppressive property of HIV-1. Retrovirology 9, 67.   DOI
29 Portis, J. L. 2002. Perspectives on the role of endogenous human retroviruses in autoimmune diseases. Virology 296, 1-5.   DOI
30 Saleh, A., Macia, A. and Muotri, A. R. 2019. Transposable elements, inflammation, and neurological disease. Front. Neurol. 10, 894.   DOI
31 Kawai, T. and Akira, S. 2007. TLR signaling. Semin. Immunol. 19, 24-32.
32 Mikhalkevich, N., O'Carroll, I. P., Tkavc, R., Lund, K., Sukumar, G., Dalgard, C. L., Johnson, K. R., Li, W., Wang, T., Nath, A. and Iordanskiy, S. 2021. Response of human macrophages to gamma radiation is mediated via expression of endogenous retroviruses. PLoS Pathog. 17, e1009305.   DOI
33 Hung, T., Pratt, G. A., Sundararaman, B., Townsend, M. J., Chaivorapol, C., Bhangale, T., Graham, R. R., Ortmann, W., Criswell, L. A., Yeo, G. W. and Behrens, T. W. 2015. The Ro60 autoantigen binds endogenous retroelements and regulates inflammatory gene expression. Science 350, 455-459.   DOI
34 Ishida, T., Obata, Y., Ohara, N., Matsushita, H., Sato, S., Uenaka, A., Saika, T., Miyamura, T., Chayama, K., Nakamura, Y., Wada, H., Yamashita, T., Morishima, T., Old, L. J. and Nakayama, E. 2008. Identification of the HERV-K gag antigen in prostate cancer by SEREX using autologous patient serum and its immunogenicity. Cancer Immun. 8, 15.
35 Kalunian, K. C., Merrill, J. T., Maciuca, R., McBride, J. M., Townsend, M. J., Wei, X., Davis, J. C. Jr. and Kennedy, W. P. 2016. A Phase II study of the efficacy and safety of rontalizumab (rhuMAb interferon-alpha) in patients with systemic lupus erythematosus (ROSE). Ann. Rheum. Dis. 75, 196-202.   DOI