• Title/Summary/Keyword: human pathogenic fungi

Search Result 52, Processing Time 0.028 seconds

Fungistatic Activity of Kojic Acid Against Human Pathogenic Fungi and Inhibition of Melanin-production in Cryptococcus neoformans

  • Chee, Hee-Youn;Lee, Eun-Hee
    • Mycobiology
    • /
    • v.31 no.4
    • /
    • pp.248-250
    • /
    • 2003
  • Kojic acid was investigated for its antifungal activity against the human pathogenic fungi including Candida albicans, Cryptococcus neoformans and Trichophyton rubrum. For C. albicans, C. neoformans and T. rubrum, the MIC(minimum inhibitory concentration) of kojic acid was 640, 80 and 160 ${\mu}g/ml$, respectively. In C. neoformans, melanin-producing yeast, kojic acid-treated nonmelanized cell was more susceptible to magainin than melanized cell, suggesting melanin give a protective function against microbial peptide.

Lipolytic Enzymes Involved in the Virulence of Human Pathogenic Fungi

  • Park, Minji;Do, Eunsoo;Jung, Won Hee
    • Mycobiology
    • /
    • v.41 no.2
    • /
    • pp.67-72
    • /
    • 2013
  • Pathogenic microbes secrete various enzymes with lipolytic activities to facilitate their survival within the host. Lipolytic enzymes include extracellular lipases and phospholipases, and several lines of evidence have suggested that these enzymes contribute to the virulence of pathogenic fungi. Candida albicans and Cryptococcus neoformans are the most commonly isolated human fungal pathogens, and several biochemical and molecular approaches have identified their extracellular lipolytic enzymes. The role of lipases and phospholipases in the virulence of C. albicans has been extensively studied, and these enzymes have been shown to contribute to C. albicans morphological transition, colonization, cytotoxicity, and penetration to the host. While not much is known about the lipases in C. neoformans, the roles of phospholipases in the dissemination of fungal cells in the host and in signaling pathways have been described. Lipolytic enzymes may also influence the survival of the lipophilic cutaneous pathogenic yeast Malassezia species within the host, and an unusually high number of lipase-coding genes may complement the lipid dependency of this fungus. This review briefly describes the current understanding of the lipolytic enzymes in major human fungal pathogens, namely C. albicans, C. neoformans, and Malassezia spp.

The Zinc Transport Systems and Their Regulation in Pathogenic Fungi

  • Jung, Won Hee
    • Mycobiology
    • /
    • v.43 no.3
    • /
    • pp.179-183
    • /
    • 2015
  • Zinc is an essential micronutrient required for many enzymes that play essential roles in a cell. It was estimated that approximately 3% of the total cellular proteins are required for zinc for their functions. Zinc has long been considered as one of the key players in host-pathogen interactions. The host sequesters intracellular zinc by utilizing multiple cellular zinc importers and exporters as a means of nutritional immunity. To overcome extreme zinc limitation within the host environment, pathogenic microbes have successfully evolved a number of mechanisms to secure sufficient concentrations of zinc for their survival and pathogenesis. In this review, we briefly discuss the zinc uptake systems and their regulation in the model fungus Saccharomyces cerevisiae and in major human pathogenic fungi such as Aspergillus fumigatus, Candida albicans, and Cryptococcus gattii.

Fungicidal Effect of Resveratrol on Human Infectious Fungi

  • Jung, Hyun-Jun;Hwang, In-Ah;Sung, Woo-Sang;Kang, Hyun-Gu;Kang, Beom-Sik;Seu, Young-Bae;Lee, Dong-Gun
    • Archives of Pharmacal Research
    • /
    • v.28 no.5
    • /
    • pp.557-560
    • /
    • 2005
  • Resveratrol, a phenolic antioxidant found in grapes, has been known to mediate various biological activities on the human body. In the present study, we tested the antifungal a ctivity of resveratrol against human pathogenic fungi before carrying out further studies to elucidate the antifungal mechanism(s) of resveratrol. Resveratrol displayed potent antifungal activity against human pathogenic fungi at concentration levels of 10-20 ${\mu}g$/mL. Furthermore, time-kill curve exhibited fungicidal effect of resveratrol on C. albicans, but the compound had no hemolytic activity against human erythrocytes. The destruction of C. albicans cells by resveratrol was confirmed by scanning electron microscopy. These results suggest that resveratrol could be employed as a therapeutic agent to treat fungal infections of humans.

Antimicrobial Effect of Furaneol Against Human Pathogenic Bacteria and Fungi

  • Sung Woo-Sang;Jung Hyun-Jun;Lee In-Seon;Kim Hyun-Soo;Lee Dong-Gun
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.3
    • /
    • pp.349-354
    • /
    • 2006
  • Furaneol, a key aroma compound found in strawberry, pineapple, and processed foodstuffs, has been known to possess various biological activities on animal models. In this study, the antimicrobial effects of furaneol against human pathogenic microorganisms were investigated. The results indicated that furaneol displayed a broad spectrum of antimicrobial activities against Gram-positive and Gram-negative bacteria and fungi without hemolytic activity on human erythrocyte cells. To confirm the antifungal activity of furaneol, we examined the accumulation of intracellular trehalose as a stress response marker on toxic agents and its effect on dimorphic transition of Candida albicans. The results demonstrated that furaneol induced significant accumulation of intracellular trehalose and exerted its antifungal effect by disrupting serum-induced mycelial forms. These results suggest that furaneol could be a therapeutic agent having a broad spectrum of antimicrobial activity on human pathogenic microorganisms.

Antifungal Activity of Magnolol and Honokiol

  • Bang, Kyu-Ho;Kim, Yoon-Kwan;Min, Byung-Sun;Na, Min-Kyun;Rhee, Young-Ha;Lee, Jong-Pill;Bae, Ki-Hwan
    • Archives of Pharmacal Research
    • /
    • v.23 no.1
    • /
    • pp.46-49
    • /
    • 2000
  • Two neolignan compound, magnolol $(5,5^{l}-diallyl-2,2^{l}-dihydroxybiphenyl, 1)$ and honokiol $(5,5^{l}-diallyl-2,4^{l}-dihydroxybiphenyl, 2)$ were isolated from the stem bark of Magnolia obovata and evaluated for antifungal activity against various human pathogenic fungi. Compound 1 and 2 showed significant inhibitory activities against Trichophyton mentagrophytes, Microsporium gypseum, Epidermophyton floccosum, Aspergillus niger, Cryptococcus neoformans, and Candida albicans with minimum inhibitory concentrations (MIC) in a range of $25-100{\mu}g/ml$. Therefore, compound 1 and 2 could be used as lead compounds for the development of novel antifungal agents.

  • PDF

Antifungal Activities of trans-Cinnamaldehyde Derivatives (trans-Cinnamaldehyde 유도체의 항진균활성 검색)

  • 방규호;조근희;이영하
    • YAKHAK HOEJI
    • /
    • v.45 no.5
    • /
    • pp.431-436
    • /
    • 2001
  • Antifungal activities of trans-cinnamaldehyde (CA) derivatives including commercial CA derivatives as well as synthesized CA derivatives against various human pathogenic fungi were investigated. Among the derivatives tested, -chlorocinnamaldehyde, $\alpha$-bromocinnamaldehyde and 7-phenyl-2,4,6-heptatrienal were more potent than CA in antifungal activity, $\alpha$-Bromocinnamaldehyde was the most effective in inhibiting the growth of representative fungi of dermatomycosis with minimum inhibitory cocentration(MIC) of 0.61~9.76$\mu\textrm{g}$/ml . In the structure-activity relationship, introduction of the chlorine and bromine group into the C-2 of CA resulted in the decrease of MIC. Derivative with more double bonds exhibited the increase of antifungal activity against various pathogenic fungi.

  • PDF

Antifungal Activity of Bacillus sp. BCNU 2002 against the Human Pathogens (인체 병원성 진균에 대한 Bacillus sp. BCNU 2002의 항진균 효과)

  • Choi, Hye-Jung;Ahn, Cheol-Soo;Jeong, Young-Kee;Kim, Dong-Wan;Joo, Woo-Hong
    • KSBB Journal
    • /
    • v.25 no.2
    • /
    • pp.123-129
    • /
    • 2010
  • An endospore-forming, rod-shaped bacterium was isolated from forest soil samples collected at the Taebaek mountain of Gangwon province, Korea, and taxonomically characterized by physiological, biochemical and phylogenetic methods. Its 16S rRNA sequences showed the maximum similarity of 97% with B. amyloliquefaciens. In addition, the isolate BCNU 2002 was determined to have the ability to produce enzymes such as amylase, protease, gelatinase and catalase. The in vitro antifungal activity of Bacillus sp. BCNU 2002 was also examined against human pathogenic fungi such as Aspergillus niger, Candida albicans, Epidermophyton floccosum, Saccharomyces cerevisiae, Trichophyton mentagrophytes and Trichophyton rubrum. A maximum production level of antifungal substances of Bacillus sp. BCNU 2002 was achieved under aerobic incubation at $28^{\circ}C$ for 7 days in LB broth. BCNU 2002 showed strong antifungal activities against T. mentagrophytes and T. rubrum with the range of percentage inhibition from 56.25 to 63.23%. It was also confirmed that ethylacetate extract of cultured broth showed a strong antifungal activity against A. niger, C. albicans, S. cerevisiae and T. rubrum by agar diffusion method. The peptide fraction also exhibited broad antifungal spectrum against various pathogenic fungi. The minimum inhibitory concentration values for active extracts ranged between 125 ${\mu}g$/mL and 1000 ${\mu}g$/mL.

Inhibitory Effects of Super Reductive Water on Plant Pathogenic Fungi

  • Hur, Jae-Seoun;Kim, Hae-Jin;Oh, Soon-Ok;Koh, Young-Jin;Kwak, Young-Se;Lee, Choong-Il
    • The Plant Pathology Journal
    • /
    • v.18 no.5
    • /
    • pp.284-287
    • /
    • 2002
  • The antifungal activity of super reductive water (SRW) against plant pathogenic fungi was examined to extend its application to integrated pest management (IPM) for plant diseases. Diluted solutions ($\times$1/10, $\times$1/25, and $\times$1/50) of SRW inhibited fungal growth of kiwifruit soft rot pathogen, Diaporthe actinidiae, in a concentration dependent manner, When kiwifruits were inoculated on wounds with mycelium blocks, stock and diluted solutions successfully inhibited the disease development. In addition to the high pH of the SRW, fungistatic activity was also considered as the cause of the antifungal effect against the pathogen. Whereas conidial germination of Magnaporthe grisea was not affected by the diluted SRW solutions, appressorium formation was significantly inhibited in a concentration dependent manner, With little harmfulness to human health and environment SRW could be used to control plant pathogenic fungi, particularly appressorium-forming fungal pathogens.

The Structure and Antibiotic Activities of Hydroxy Acid of Lanostenol Compound in Daedalea dickinsii

  • Bae, Gang Gyu;Min, Tae Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.12
    • /
    • pp.1199-1201
    • /
    • 2000
  • 31-Hydroxycarbowyacetylquercinic acid, a lanostenoid hydroxyl acid has been isolated from D. dickinsii by solbent extraction, silica gel column chromatography and recrystallization. The structure of this compound has been determined to be 31-hydroxycarboxyacetylquercinic acid by a combinationof spectral data and by HM-BC. This compound showed antimicrobial activities against human pathogenic fungi and bacteria.