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Lipolytic Enzymes Involved in the Virulence of 
Human Pathogenic Fungi
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Abstract Pathogenic microbes secrete various enzymes with lipolytic activities to facilitate their survival within the host. Lipolytic
enzymes include extracellular lipases and phospholipases, and several lines of evidence have suggested that these enzymes
contribute to the virulence of pathogenic fungi. Candida albicans and Cryptococcus neoformans are the most commonly isolated
human fungal pathogens, and several biochemical and molecular approaches have identified their extracellular lipolytic enzymes.
The role of lipases and phospholipases in the virulence of C. albicans has been extensively studied, and these enzymes have been
shown to contribute to C. albicans morphological transition, colonization, cytotoxicity, and penetration to the host. While not
much is known about the lipases in C. neoformans, the roles of phospholipases in the dissemination of fungal cells in the host
and in signaling pathways have been described. Lipolytic enzymes may also influence the survival of the lipophilic cutaneous
pathogenic yeast Malassezia species within the host, and an unusually high number of lipase-coding genes may complement the
lipid dependency of this fungus. This review briefly describes the current understanding of the lipolytic enzymes in major human
fungal pathogens, namely C. albicans, C. neoformans, and Malassezia spp.
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Pathogenic microbes secrete hydrolytic enzymes that enable
them to breach and invade host tissues. The most highly
recognized extracellular hydrolytic enzymes include proteinases
and the lipolytic enzymes, lipases and phospholipases.
Numerous studies have focused on the functions of
proteinases in the virulence of pathogenic microbes and
have suggested that proteinase activities alter the permeability
of the epithelial barrier and induce inflammatory responses
[1]. In contrast, the roles of lipases and phospholipases in
virulence remain widely unexplored.

Lipases catalyze the hydrolysis of ester bonds of
triacylglycerols, resulting in the release of fatty acids. In
almost all organisms, lipases play essential roles in lipid
metabolism, including digestion, transport, and the processing

of dietary lipids. In addition, a number of studies have
shown that human microbial pathogens utilize lipases in
their pathogenesis. Lipase activity is required for the
colonization and persistence of the bacterial pathogens
Propionibacterium acnes and Staphylococcus epidermidis on
human skin [2, 3]. Furthermore, the lipases of Staphylococcus
aureus and Pseudomonas aeruginosa have been shown to
interfere with the immune response of host cells [4].
Mycobacterium tuberculosis also relies on its lipases to
hydrolyze host cell lipids during infection, and then uses
the released fatty acids as its long-term energy source [5].
Lipolytic enzymes have also been implicated in the virulence
of fungal pathogens; the contribution of lipases in fungal
pathogenesis has been extensively characterized in Candida
spp. C. albicans possesses at least 10 lipase-encoding genes,
the expression of which is largely influenced by the stage
of infection [6]. In C. parapsilosis, lipases are responsible
for the destruction of epidermal and epithelial tissues [7].
Lipases also play important roles in the virulence of skin-
associated lipophilic fungal pathogens of the Malassezia
spp. The gene that encodes for lipases in M. furfur, M.
pachydermatis, and M. globosa has been identified, and
recent genome sequencing efforts have revealed at least 14
lipase-encoding genes in M. globosa [8-10].

Phospholipases hydrolyze one or more ester linkages in
glycerophospholipids, resulting in the release of free fatty
acids [11]. In general, phospholipases are classified into 5
subclasses: A (PLA), A2 (PLA2), B (PLB), C (PLC), and D
(PLD), depending on the specific ester bond they target [11].
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Evidence indicating that phospholipases may contribute to
host cell penetration, injury, and lysis has emerged from
the study of parasitic protozoa such as Toxoplasma gondii
and Entamoeba histolytica, and bacterial pathogens of the
Rickettsia spp. and S. aureus, and fungal pathogens C.
albicans, C. neoformans, and Malassezia spp. [11, 12]. The
type of phospholipases associated with pathogenicity varies
among organisms, but the activities of these enzymes
commonly result in the destabilization of the host cell
membrane and the release of lipid second messengers [12, 13].
Thus, accumulating data have suggested the importance of
lipases and phospholipases in virulence of pathogenic
microbes. In this review, we summarize current findings
on the roles of lipases and phospholipases in virulence of
major fungal pathogens, C. albicans and C. neoformans, as
well as the recently emerging cutaneous opportunistic
pathogen, Malassezia spp.

LIPOLYTIC ENZYMES OF CANDIDA ALBICANS

C. albicans is the most prevalent cause of hospital-acquired
infectious fungal diseases. For the immunocompromised
individual, this fungus causes life-threatening systemic
diseases, and its mortality may be as high as 50%.
Superficial fungal infections such as thrush and vaginitis
are also caused by C. albicans [14, 15]. The secreted lipase
activity of C. albicans was first detected by Fu et al. [16]. A
subsequent genomic library screening has identified the
gene, LIP1 that encodes a lipase containing the conserved
Gly-X-Ser-X-Gly motif. Non-albicans Candida spp. such as
C. parapsilosis, C. tropicalis, and C. krusei have also been
shown to possess a gene that is orthologous to C. albicans
LIP1. The discovery of LIP1 in C. albicans has led to the
identification of additional 9 lipase-encoding genes, LIP2~
LIP10, wherein the sequence is highly conserved (up to
80% sequence identity). The contribution of the lipase to
C. albicans persistence and virulence has also been
suggested, based on the observation of expression of all 10
lipases during the yeast-hypha transition and the detection
of transcription of lipases such as LIP5, LIP6, LIP8, and
LIP9 during experimental infections [6]. The differential
expression of LIP1~LIP10 during colonization in experimental
models and in patient specimens has also been previously
reported [17, 18]. Furthermore, an additional ~70 kDa
extracellular lipase activity has been detected and shown to
exert cytotoxic effects in the host macrophages and hepatocytes,
presumably through the production of reactive oxygen
species [19, 20].

Extracellular phospholipases also play major roles in the
virulence of C. albicans, and a previous study has shown
that approximately 79% of clinically isolated C. albicans
strains secrete the enzyme [21]. PLA, PLB, PLC, and PLD
have been detected in C. albicans, and the genes encoding
these proteins have been identified [22-26]. PLB1 encodes
PLB and was the first phospholipase gene identified in C.
albicans. A strain lacking PLB1 has been generated and

used in the assessment of the virulent attributes of PLB.
Although PLB1 did not influence the growth and morphology
of the fungus or its adherence to the host cell, the virulence
of the null mutant was significantly attenuated in murine
models of disseminated candidiasis [24, 27]. The second
gene, PLB2, which encodes for PLB, has also been identified
in C. albicans [28]. However, its role may be marginal,
because in vivo analysis of 137 human subjects with oral
and vaginal candidiasis revealed that only PLB1 but not
PLB2 expression correlates with human oral infections
[29]. To date, 3 genes, PLC1, PLC2, and PLC3, which
encode PLC, have been identified in C. albicans. Among
these, PLC1 has been determined as essential, whereas
PLC2 and PLC3 are not. Although the heterozygous plc1/
PLC1 mutant and the mutant lacking PLC2 and PLC3 were
deficient in hyphal formation, the functions of PLC were
shown to be dispensable for virulence [30]. PLD is involved
in diverse essential cellular processes, including sporulation,
growth, and membrane lipid synthesis in the non-pathogenic
model yeast Saccharomyces cerevisiae [31-34]. Relevant roles
for PLD in C. albicans have been previously demonstrated
by McLain and Dolan [35], and the gene encoding the
protein with a highly conserved PLD motif was identified
and designated as PLD1 [36]. An attenuation of virulence
was observed in mice orally infected with a PLD1-deficient
mutant, thus suggesting that PLD may play a role in the
pathogenesis of C. albicans [26]. Accumulating data therefore
indicate that lipolytic enzymes, such as lipases and
phospholipases, play critical roles in virulence of C. albicans.

LIPOLYTIC ENZYMES OF CRYPTOCOCCUS 
NEOFORMANS

C. neoformans is an encapsulated human pathogenic fungus
that causes pulmonary cryptococcosis and cryptococcal
meningitis mainly in immunocompromised individuals such
as acquired immunodeficiency syndrome (AIDS) patients
[37, 38]. To date, little information on the functions and
the roles of lipases in C. neoformans is available, although
genome sequence data have indicated that the fungus
possesses at least 3 lipase genes. Unlike C. albicans, none of
the lipase-encoding genes in C. neoformans produce a
protein with a signal peptide and no extracellular lipase
activity has been detected from a clinically isolated C.
neoformans strain [39]. In contrast, numerous studies have
suggested that phospholipases play a role in the physiology
and virulence of C. neoformans. Early studies have reported
that clinically isolated C. neoformans strains secrete
phospholipases, and a characterization of their activity has
identified these as mainly phospholipase B and suggested
that the activity of this enzyme correlates with the capsule
size and virulence of the fungus [40-42]. Phospholipase A
activity has also been previously reported, although the
gene encoding this particular enzyme and its virulence
attributes have not been established [43, 44]. The gene
encoding phospholipase B, PLB1, has been identified and a
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deletion mutant has been generated through targeted gene
disruption. The plb1 mutant displayed no particular phenotype
when it was examined for the expression of major virulence
factors such as the ability to grow at 37oC, capsule formation,
and melanin synthesis. However, deletion of PLB1 resulted
in attenuated virulence in the mouse inhalation model and
the rabbit meningitis model, indicating that PLB contributes
to the pathogenicity of C. neoformans [13]. The importance
of PLB in the virulence of C. neoformans was further
confirmed by the observation of glycerophosphorylcholine
(GPC) in lesions extracted from animals infected with
C. neoformans. The occurrence of GPC was consistent
with the generation of hydrolysis products from the host
phospholipids through the action of PLB in C. neoformans
[45]. Furthermore, the study suggested that PLB activity is
required for the initiation of interstitial pulmonary infections
and for the dissemination from the lung through the
lymphatics and blood, whereas the dissemination of
cryptococci to the central nervous system was shown to be
independent of the enzyme [46]. C. neoformans PLB contains
an N-terminal secretory leader peptide and acquires a
glycosylphosphatidylinositol (GPI) anchor that facilitates
its attachment to the plasma membrane prior to secretion
[47]. PLB in C. neoformans is also extensively glycosylated
at its N-terminal, which influences membrane association
and the secretion of the enzyme [48]. Chayakulkeeree
et al. [49] demonstrated that cleavage of PLB is mediated
by phosphatidylinositol-specific phospholipase C (PI-PLC),
which is encoded by two genes, PLC1 and PLC2. The
mutant that lacks either PLC1 or PLC2 was constructed to
characterize the functions of PI-PLC in C. neoformans.
While no particular phenotypic characteristic was observed
in the plc2 mutant, the effect of the deletion of PLC1 was
dramatic. The plc1 mutant showed an impaired growth at
37oC, protein secretion, and melanin production, and was
avirulent in a murine inhalation model of cryptococcosis.
A correlation between PLC and the protein kinase C/
mitogen-activated protein kinase signaling pathway has also
been suggested and has further confirmed the significant
roles of PLC in the physiology and pathogenicity of C.
neoformans.

LIPOLYTIC ENZYMES OF MALASSEZIA SPP.

Malassezia spp. are associated with various dermatological
diseases, including seborrheic dermatitis, dandruff, atopic
dermatitis, and pityriasis versicolor [50]. To date, 14 spp.
have been identified and all Malassezia spp., except M.
pachydermatis, are known to be obligatorily lipid-dependent
[51]. The lipophilic nature of Malassezia spp. may be
attributable to its inability to synthesize myristic acid, which
is the precursor of long chain fatty acids. Recent genome
analysis of M. globosa has revealed the absence of a gene
that influences fatty acid synthesis [52]. The genome of M.
globosa contains a number of genes that encode for lipolytic
enzymes, including 14 lipases and 9 phospholipases, which

may compensate for the lipid dependency of the fungus.
A significantly higher lipid content in the cell wall of
Malassezia spp. compared to non-pathogenic fungi such as
S. cerevisiae has been previously reported, and the lipid
microfibrillar layer of the Malassezia cell has been shown
to down-regulate the inflammatory immune response,
implying that the lipid dependency of the fungus might
play a role in virulence [53, 54].

The importance of the lipase function was first studied
in M. furfur. Its enzyme activity was initially detected in
the insoluble fraction of the cells, and its optimum pH was
determined as acidic. A positive correlation between lipase
activity and cell growth has also been observed [55].
Brunke and Hube [56] cloned and characterized the gene,
MfLIP1, which encodes for the extracellular lipase in M.
furfur. A protein sequence analysis has shown that MfLip1
contains the conserved lipase motif, Gly-X-Ser-X-Gly, and
is similar to lipases in C. albicans. The protein contains a
signal peptide at its N-terminus, but not a transmembrane
domain or a GPI-anchor motif. The MfLIP1 gene might
not belong to other lipase gene families in the genome of
M. furfur, because no signal was detected during Southern
blot analysis by using the cDNA fragment of the gene
as a probe. Interestingly however, the same approach using
the genome of M. pachydermatis displayed signals, thus
suggesting the presence of an ortholog. Moreover, heterologous
expression of the cDNA of MfLIP1 in Pichia pastoris has
suggested that the recombinant MfLip1 is most active at
40oC and its optimal pH was 5.8.

The gene encoding for the extracellular lipase in M.
pachydermatis has been cloned and characterized [57]. M.
globosa, one of the most frequently isolated Malassezia spp.
from patients with dandruff and seborrheic dermatitis, also
displayed extracellular lipase activity. Although recent genome
analysis has revealed there are at least 14 lipase-encoding
genes, only one gene, MgLIP1, has been identified. Similar
to lipases in other Malassezia spp., the protein product of
MgLIP1 contains the conserved lipase motif and the signal
peptide. The regulation of gene expression has also been
investigated, with MgLIP1 transcription levels regulated by
its growth phase in vitro. The expression of MgLIP1 was
higher in the late log phase compared to early log and
stationary phases. Moreover, the expression of MgLIP1 was
detected in human scalp specimens, indicating that lipases
may play a key role in virulence of M. globosa [8]. The
structure of MgLip1 has been proposed, and its substrates
have been reported to be strictly specific for mono- and
diacylglycerol, but not triacylglycerol [58, 59]. Other than
MgLip1, additional extracellular lipase activity has been
identified. The enzyme has been designated as MgLip2 and
optimal activity has been observed at 30oC and pH 5.0
[60]. Interestingly, a recent study compared the extracellular
lipase activity of several Malassezia spp., with M. globosa
showing the highest lipase activity [61].

Current information on phospholipases in Malassezia
spp. is limited. Juntachai et al. [61] detected extracellular
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phospholipase activities in M. furfur, M. pachydermatis, M.
slooffiae, M. sympodialis, M. globosa, M. restricta, and M.
obtusa. However, enzyme activity was higher only in M.
pachydermatis, which is lipid-independent and has been
normally isolated in dogs. The phospholipase activity in
Malassezia spp. associated with humans is relatively low,
which implies that the role of secreted phospholipases in
Malassezia spp. might be marginal.

CONCLUSIONS

Numerous experimental data have revealed the contribution
of lipolytic enzymes in the virulence of human pathogenic
fungi (Table 1). C. albicans and C. neoformans have served
as good model systems for investigating the functions and
roles of specific enzymes in fungal pathogenesis. Lipolytic
enzymes, which include secreted lipases and phospholipases,
have been shown to influence growth, morphology, adherence,
and dissemination of fungal cells across the host. Several
studies have also emphasized the significance of lipolytic
enzymes in Malassezia spp., although no genetic tool has
been developed. Secreted lipases are key players and may
complement lipid dependency of Malassezia spp. Therefore,
a greater effort in understanding the roles of lipolytic
enzymes in fungal pathogens is warranted.

ACKNOWLEDGEMENTS

This research was supported by the Chung-Ang University
Research Scholarship Grants in 2013.

REFERENCES

1. Yike I. Fungal proteases and their pathophysiological effects.
Mycopathologia 2011;171:299-323.

2. Gribbon EM, Cunliffe WJ, Holland KT. Interaction of

Propionibacterium acnes with skin lipids in vitro. J Gen
Microbiol 1993;139:1745-51.

3. Farrell AM, Foster TJ, Holland KT. Molecular analysis and
expression of the lipase of Staphylococcus epidermidis. J Gen
Microbiol 1993;139:267-77.

4. Jaeger KE, Ransac S, Dijkstra BW, Colson C, van Heuvel M,
Misset O. Bacterial lipases. FEMS Microbiol Rev 1994;15:29-
63.

5. Singh G, Singh G, Jadeja D, Kaur J. Lipid hydrolizing
enzymes in virulence: Mycobacterium tuberculosis as a model
system. Crit Rev Microbiol 2010;36:259-69.

6. Hube B, Stehr F, Bossenz M, Mazur A, Kretschmar M,
Schäfer W. Secreted lipases of Candida albicans: cloning,
characterisation and expression analysis of a new gene family
with at least ten members. Arch Microbiol 2000;174:362-74.

7. Gácser A, Schäfer W, Nosanchuk JS, Salomon S, Nosanchuk
JD. Virulence of Candida parapsilosis, Candida orthopsilosis,
and Candida metapsilosis in reconstituted human tissue
models. Fungal Genet Biol 2007;44:1336-41.

8. DeAngelis YM, Saunders CW, Johnstone KR, Reeder NL,
Coleman CG, Kaczvinsky JR Jr, Gale C, Walter R, Mekel M,
Lacey MP, et al. Isolation and expression of a Malassezia
globosa lipase gene, LIP1. J Invest Dermatol 2007;127:2138-
46.

9. Mancianti F, Rum A, Nardoni S, Corazza M. Extracellular
enzymatic activity of Malassezia spp. isolates. Mycopathologia
2001;149:131-5.

10. Muhsin TM, Aubaid AH, al-Duboon AH. Extracellular
enzyme activities of dermatophytes and yeast isolates on solid
media. Mycoses 1997;40:465-9.

11. Ghannoum MA. Potential role of phospholipases in virulence
and fungal pathogenesis. Clin Microbiol Rev 2000;13:122-43.

12. Ibrahim AS, Mirbod F, Filler SG, Banno Y, Cole GT, Kitajima
Y, Edwards JE Jr, Nozawa Y, Ghannoum MA. Evidence
implicating phospholipase as a virulence factor of Candida
albicans. Infect Immun 1995;63:1993-8.

13. Cox GM, McDade HC, Chen SC, Tucker SC, Gottfredsson

Table 1. Genes encoding lipases and phospholipases in major human fungal pathogens

Fungal pathogen Lipase Phospholipase Virulence of the null mutant Reference

Candida albicans LIP1-10 N/Aa [16-18]
PLB1
PLB2
PLC1, PLC2, PLC3
PLD1

Attenuated
N/A
Virulentb

Attenuated

[27]
[28]
[30]
[26]

Cryptococcus neoformans N/A
PLB1
PLC1 
PLC2

Attenuated
Avirulent
Virulent

[13]
[49]

Malassezia spp. MfLIP1
MpLIP1
MgLIP1
MgLIP2

N/A
N/A
N/A
N/A

[56]
[57]
[8]
[60]

N/A

N/A, not available.
aGenes have been identified, but the function and virulence attributes have not been established.
bThe null mutant was as virulent as the wild-type in the experimental animal model.



Lipases and Phospholipases in Pathogenic Fungi 71

M, Wright LC, Sorrell TC, Leidich SD, Casadevall A,
Ghannoum MA, et al. Extracellular phospholipase activity is
a virulence factor for Cryptococcus neoformans. Mol Microbiol
2001;39:166-75.

14. Pfaller MA, Diekema DJ. Epidemiology of invasive candidiasis:
a persistent public health problem. Clin Microbiol Rev
2007;20:133-63.

15. Zaoutis TE, Argon J, Chu J, Berlin JA, Walsh TJ, Feudtner C.
The epidemiology and attributable outcomes of candidemia
in adults and children hospitalized in the United States: a
propensity analysis. Clin Infect Dis 2005;41:1232-9.

16. Fu Y, Ibrahim AS, Fonzi W, Zhou X, Ramos CF, Ghannoum
MA. Cloning and characterization of a gene (LIP1) which
encodes a lipase from the pathogenic yeast Candida albicans.
Microbiology 1997;143(Pt 2):331-40.

17. Stehr F, Felk A, Gácser A, Kretschmar M, Mähnss B, Neuber
K, Hybe B, Schäfer W. Expression analysis of the Candida
albicans lipase gene family during experimental infections
and in patient samples. FEMS Yeast Res 2004;4:401-8.

18. Schofield DA, Westwater C, Warner T, Balish E. Differential
Candida albicans lipase gene expression during alimentary
tract colonization and infection. FEMS Microbiol Lett 2005;
244:359-65.

19. Paraje MG, Correa SG, Renna MS, Theumer M, Sotomayor
CE. Candida albicans-secreted lipase induces injury and
steatosis in immune and parenchymal cells. Can J Microbiol
2008;54:647-59.

20. Paraje MG, Correa SG, Albesa I, Sotomayor CE. Lipase of
Candida albicans induces activation of NADPH oxidase and
L-arginine pathways on resting and activated macrophages.
Biochem Biophys Res Commun 2009;390:263-8.

21. Samaranayake LP, Raeside JM, MacFarlane TW. Factors
affecting the phospholipase activity of Candida species in
vitro. Sabouraudia 1984;22:201-7.

22. Barrett-Bee K, Hayes Y, Wilson RG, Ryley JF. A comparison
of phospholipase activity, cellular adherence and pathogenicity
of yeasts. J Gen Microbiol 1985;131:1217-21.

23. Banno Y, Yamada T, Nozawa Y. Secreted phospholipases of
the dimorphic fungus, Candida albicans: separation of three
enzymes and some biological properties. Sabouraudia 1985;
23:47-54.

24. Hoover CI, Jantapour MJ, Newport G, Agabian N, Fisher SJ.
Cloning and regulated expression of the Candida albicans
phospholipase B (PLB1) gene. FEMS Microbiol Lett 1998;167:
163-9.

25. Pugh D, Cawson RA. The cytochemical localization of
phospholipase in Candida albicans infecting the chick chorio-
allantoic membrane. Sabouraudia 1977;15:29-35.

26. Hube B, Hess D, Baker CA, Schaller M, Schäfer W, Dolan JW.
The role and relevance of phospholipase D1 during growth
and dimorphism of Candida albicans. Microbiology 2001;
147(Pt 4):879-89.

27. Leidich SD, Ibrahim AS, Fu Y, Koul A, Jessup C, Vitullo J,
Fonzi W, Mirbod F, Nakashima S, Nozawa Y, et al. Cloning
and disruption of caPLB1, a phospholipase B gene involved
in the pathogenicity of Candida albicans. J Biol Chem 1998;
273:26078-86.

28. Sugiyama Y, Nakashima S, Mirbod F, Kanoh H, Kitajima Y,
Ghannoum MA, Nozawa Y. Molecular cloning of a second

phospholipase B gene, caPLB2 from Candida albicans. Med
Mycol 1999;37:61-7.

29. Naglik JR, Rodgers CA, Shirlaw PJ, Dobbie JL, Fernandes-
Naglik LL, Greenspan D, Agabian N, Challacombe SJ.
Differential expression of Candida albicans secreted aspartyl
proteinase and phospholipase B genes in humans correlates
with active oral and vaginal infections. J Infect Dis 2003;
188:469-79.

30. Kunze D, Melzer I, Bennett D, Sanglard D, MacCallum D,
Nörskau J, Coleman DC, Odds FC, Schäfer W, Hube B.
Functional analysis of the phospholipase C gene CaPLC1 and
two unusual phospholipase C genes, CaPLC2 and CaPLC3, of
Candida albicans. Microbiology 2005;151(Pt 10):3381-94.

31. Ella KM, Dolan JW, Qi C, Meier KE. Characterization of
Saccharomyces cerevisiae deficient in expression of phospholipase
D. Biochem J 1996;314(Pt 1):15-9.

32. Waksman M, Eli Y, Liscovitch M, Gerst JE. Identification and
characterization of a gene encoding phospholipase D activity
in yeast. J Biol Chem 1996;271:2361-4.

33. Sreenivas A, Patton-Vogt JL, Bruno V, Griac P, Henry SA. A
role for phospholipase D (Pld1p) in growth, secretion, and
regulation of membrane lipid synthesis in yeast. J Biol Chem
1998;273:16635-8.

34. Xie Z, Fang M, Rivas MP, Faulkner AJ, Sternweis PC,
Engebrecht JA, Bankaitis VA. Phospholipase D activity is
required for suppression of yeast phosphatidylinositol transfer
protein defects. Proc Natl Acad Sci U S A 1998;95:12346-51.

35. McLain N, Dolan JW. Phospholipase D activity is required
for dimorphic transition in Candida albicans. Microbiology
1997;143(Pt 11):3521-6.

36. Kanoh H, Nakashima S, Zhao Y, Sugiyama Y, Kitajima Y,
Nozawa Y. Molecular cloning of a gene encoding phospholipase
D from the pathogenic and dimorphic fungus, Candida
albicans. Biochim Biophys Acta 1998;1398:359-64.

37. Kronstad JW, Attarian R, Cadieux B, Choi J, D'Souza CA,
Griffiths EJ, Geddes JM, Hu G, Jung WH, Kretschmer M, et
al. Expanding fungal pathogenesis: Cryptococcus breaks out of
the opportunistic box. Nat Rev Microbiol 2011;9:193-203.

38. Park BJ, Wannemuehler KA, Marston BJ, Govender N,
Pappas PG, Chiller TM. Estimation of the current global
burden of cryptococcal meningitis among persons living with
HIV/AIDS. AIDS 2009;23:525-30.

39. García-Martos P, Marín P, Hernández-Molina JM, García-
Agudo L, Aoufi S, Mira J. Extracellular enzymatic activity in
11 Cryptococcus species. Mycopathologia 2001;150:1-4.

40. Chen SC, Muller M, Zhou JZ, Wright LC, Sorrell TC.
Phospholipase activity in Cryptococcus neoformans: a new
virulence factor ? J Infect Dis 1997;175:414-20.

41. Vidotto V, Sinicco A, Di Fraia D, Cardaropoli S, Aoki S, Ito-
Kuwa S. Phospholipase activity in Cryptococcus neoformans.
Mycopathologia 1996;136:119-23.

42. Chen SC, Wright LC, Santangelo RT, Muller M, Moran VR,
Kuchel PW, Sorrell TC. Identification of extracellular
phospholipase B, lysophospholipase, and acyltransferase
produced by Cryptococcus neoformans. Infect Immun 1997;
65:405-11.

43. Wright LC, Santangelo RM, Ganendren R, Payne J,
Djordjevic JT, Sorrell TC. Cryptococcal lipid metabolism:
phospholipase B1 is implicated in transcellular metabolism of



72 Park et al.

macrophage-derived lipids. Eukaryot Cell 2007;6:37-47.
44. Ganendren R, Widmer F, Singhal V, Wilson C, Sorrell T,

Wright L. In vitro antifungal activities of inhibitors of
phospholipases from the fungal pathogen Cryptococcus
neoformans. Antimicrob Agents Chemother 2004;48:1561-9.

45. Himmelreich U, Allen C, Dowd S, Malik R, Shehan BP,
Mountford C, Sorrell TC. Identification of metabolites of
importance in the pathogenesis of pulmonary cryptococcoma
using nuclear magnetic resonance spectroscopy. Microbes
Infect 2003;5:285-90.

46. Santangelo R, Zoellner H, Sorrell T, Wilson C, Donald C,
Djordjevic J, Shounan Y, Wright L. Role of extracellular
phospholipases and mononuclear phagocytes in dissemination
of cryptococcosis in a murine model. Infect Immun 2004;
72:2229-39.

47. Djordjevic JT, Del Poeta M, Sorrell TC, Turner KM, Wright
LC. Secretion of cryptococcal phospholipase B1 (PLB1) is
regulated by a glycosylphosphatidylinositol (GPI) anchor.
Biochem J 2005;389(Pt 3):803-12.

48. Turner KM, Wright LC, Sorrell TC, Djordjevic JT. N-linked
glycosylation sites affect secretion of cryptococcal phospholipase
B1, irrespective of glycosylphosphatidylinositol anchoring.
Biochim Biophys Acta 2006;1760:1569-79.

49. Chayakulkeeree M, Sorrell TC, Siafakas AR, Wilson CF,
Pantarat N, Gerik KJ, Boadle R, Djordjevic JT. Role and
mechanism of phosphatidylinositol-specific phospholipase C
in survival and virulence of Cryptococcus neoformans. Mol
Microbiol 2008;69:809-26.

50. Ashbee HR. Recent developments in the immunology and
biology of Malassezia species. FEMS Immunol Med Microbiol
2006;47:14-23.

51. Hort W, Mayser P. Malassezia virulence determinants. Curr
Opin Infect Dis 2011;24:100-5.

52. Xu J, Saunders CW, Hu P, Grant RA, Boekhout T, Kuramae
EE, Kronstad JW, Deangelis YM, Reeder NL, Johnstone KR,

et al. Dandruff-associated Malassezia genomes reveal
convergent and divergent virulence traits shared with plant
and human fungal pathogens. Proc Natl Acad Sci U S A
2007;104:18730-5.

53. Thompson E, Colvin JR. Composition of the cell wall of
Pityrosporum ovale (Bizzozero) Castellani and Chalmers. Can
J Microbiol 1970;16:263-5.

54. Kesavan S, Holland KT, Ingham E. The effects of lipid
extraction on the immunomodulatory activity of Malassezia
species in vitro. Med Mycol 2000;38:239-47.

55. Ran Y, Yoshiike T, Ogawa H. Lipase of Malassezia furfur:
some properties and their relationship to cell growth. J Med
Vet Mycol 1993;31:77-85.

56. Brunke S, Hube B. MfLIP1, a gene encoding an extracellular
lipase of the lipid-dependent fungus Malassezia furfur.
Microbiology 2006;152(Pt 2):547-54.

57. Shibata N, Okanuma N, Hirai K, Arikawa K, Kimura M,
Okawa Y. Isolation, characterization and molecular cloning of
a lipolytic enzyme secreted from Malassezia pachydermatis.
FEMS Microbiol Lett 2006;256:137-44.

58. Xu T, Liu L, Hou S, Xu J, Yang B, Wang Y, Liu J. Crystal
structure of a mono- and diacylglycerol lipase from Malassezia
globosa reveals a novel lid conformation and insights into the
substrate specificity. J Struct Biol 2012;178:363-9.

59. Liu L, Gao C, Lan D, Yang B, Wang Y. Molecular basis for
substrate selectivity of a mono- and diacylglycerol lipase from
Malassezia globosa. Biochem Biophys Res Commun 2012;424:
285-9.

60. Juntachai W, Oura T, Kajiwara S. Purification and
characterization of a secretory lipolytic enzyme, MgLIP2,
from Malassezia globosa. Microbiology 2011;157(Pt 12):3492-
9.

61. Juntachai W, Oura T, Murayama SY, Kajiwara S. The lipolytic
enzymes activities of Malassezia species. Med Mycol 2009;
47:477-84.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <>
    /SVE <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


