• Title/Summary/Keyword: human lungs

Search Result 116, Processing Time 0.028 seconds

Effects of Lactobacillus plantarum and Leuconostoc mesenteroides Probiotics on Human Seasonal and Avian Influenza Viruses

  • Bae, Joon-Yong;Kim, Jin Il;Park, Sehee;Yoo, Kirim;Kim, In-Ho;Joo, Wooha;Ryu, Byung Hee;Park, Mee Sook;Lee, Ilseob;Park, Man-Seong
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.6
    • /
    • pp.893-901
    • /
    • 2018
  • Influenza viruses that cause recurrent seasonal epidemics to humans can be controlled with vaccine and antiviral therapy. However, the medical treatments often exhibit limited efficacy in the elderly or immunosuppressed individuals. In these cases, daily uptake of probiotics may be an option to bring in health benefits against influenza. Here, we demonstrate the effects of probiotics Lactobacillus plantarum (Lp) and Leuconostoc mesenteroides (Lm) against seasonal and avian influenza viruses. As assessed by the plaque size reduction of human H1N1 and avian influenza H7N9 viruses, including green fluorescent protein-tagged H1N1 strain in cells, the selected Lp and Lm strains restrained viral replication in mouse lungs with statistical significance. Against lethal viral challenge, the Lp and Lm strains exhibited their beneficial effects by increasing the mean days and rates of survival of the infected mice. These results suggest that, despite rather narrow ranges of protective efficacy, the dietary supplement of Lactobacillus and Leuconostoc probiotics may promote health benefits against influenza.

A New Murine Liver Fibrosis Model Induced by Polyhexamethylene Guanidine-Phosphate

  • Kim, Minjeong;Hur, Sumin;Kim, Kwang H.;Cho, Yejin;Kim, Keunyoung;Kim, Ha Ryong;Nam, Ki Taek;Lim, Kyung-Min
    • Biomolecules & Therapeutics
    • /
    • v.30 no.2
    • /
    • pp.126-136
    • /
    • 2022
  • Liver fibrosis is part of the wound healing process to help the liver recover from the injuries caused by various liver-damaging insults. However, liver fibrosis often progresses to life-threatening cirrhosis and hepatocellular carcinoma. To overcome the limitations of current in vivo liver fibrosis models for studying the pathophysiology of liver fibrosis and establishing effective treatment strategies, we developed a new mouse model of liver fibrosis using polyhexamethylene guanidine phosphate (PHMG-p), a humidifier sterilizer known to induce lung fibrosis in humans. Male C57/BL6 mice were intraperitoneally injected with PHMG-p (0.03% and 0.1%) twice a week for 5 weeks. Subsequently, liver tissues were examined histologically and RNA-sequencing was performed to evaluate the expression of key genes and pathways affected by PHMG-p. PHMG-p injection resulted in body weight loss of ~15% and worsening of physical condition. Necropsy revealed diffuse fibrotic lesions in the liver with no effect on the lungs. Histology, collagen staining, immunohistochemistry for smooth muscle actin and collagen, and polymerase chain reaction analysis of fibrotic genes revealed that PHMG-p induced liver fibrosis in the peri-central, peri-portal, and capsule regions. RNA-sequencing revealed that PHMG-p affected several pathways associated with human liver fibrosis, especially with upregulation of lumican and IRAK3, and downregulation of GSTp1 and GSTp2, which are closely involved in liver fibrosis pathogenesis. Collectively we demonstrated that the PHMG-p-induced liver fibrosis model can be employed to study human liver fibrosis.

A Moonlighting Protein Secreted by a Nasal Microbiome Fortifies the Innate Host Defense Against Bacterial and Viral Infections

  • Gwanghee Kim;Yoojin Lee;Jin Sun You;Wontae Hwang;Jeewon Hwang;Hwa Young Kim;Jieun Kim;Ara Jo;In ho Park;Mohammed Ali;Jongsun Kim;Jeon-Soo Shin;Ho-Keun Kwon;Hyun Jik Kim;Sang Sun Yoon
    • IMMUNE NETWORK
    • /
    • v.23 no.4
    • /
    • pp.31.1-31.18
    • /
    • 2023
  • Evidence suggests that the human respiratory tract, as with the gastrointestinal tract, has evolved to its current state in association with commensal microbes. However, little is known about how the airway microbiome affects the development of airway immune system. Here, we uncover a previously unidentified mode of interaction between host airway immunity and a unique strain (AIT01) of Staphylococcus epidermidis, a predominant species of the nasal microbiome. Intranasal administration of AIT01 increased the population of neutrophils and monocytes in mouse lungs. The recruitment of these immune cells resulted in the protection of the murine host against infection by Pseudomonas aeruginosa, a pathogenic bacterium. Interestingly, an AIT01-secreted protein identified as GAPDH, a well-known bacterial moonlighting protein, mediated this protective effect. Intranasal delivery of the purified GAPDH conferred significant resistance against other Gram-negative pathogens (Klebsiella pneumoniae and Acinetobacter baumannii) and influenza A virus. Our findings demonstrate the potential of a native nasal microbe and its secretory protein to enhance innate immune defense against airway infections. These results offer a promising preventive measure, particularly relevant in the context of global pandemics.

Pandemic Influenza A/H1N1 Viral Pneumonia without Co-Infection in Korea: Chest CT Findings

  • Son, Jun-Seong;Kim, Yee-Hyung;Lee, Young-Kyung;Park, So-Young;Choi, Cheon-Woong;Park, Myung-Jae;Yoo, Jee-Hong;Kang, Hong-Mo;Lee, Jong-Hoo;Park, Bo-Ram
    • Tuberculosis and Respiratory Diseases
    • /
    • v.70 no.5
    • /
    • pp.397-404
    • /
    • 2011
  • Background: To evaluate chest CT findings of pandemic influenza A/H1N1 pneumonia without co-infection. Methods: Among 56 patients diagnosed with pandemic influenza A/H1N1 pneumonia, chest CT was obtained in 22 between October 2009 and Februrary 2010. Since two patients were co-infected with bacteria, the other twenty were evaluated. Predominant parenchymal patterns were categorized into consolidation, ground glass opacity (GGO), and mixed patterns. Distribution of parenchymal abnormalities was assessed. Results: Median age was 46.5 years. The CURB-65 score, which is the scoring system for severity of community acquired pneumonia, had a median of 1. Median duration of symptoms was 3 days. All had abnormal chest x-ray findings. The median number of days after the hospital visit that Chest CT was performed was 1. The reasons for chest CT performance were radiographic findings unusual for pneumonia (n=13) and unexplained dyspnea (n=7). GGO was the most predominant pattern on CT (n=13, 65.0%). Parenchymal abnormalities were observed in both lungs in 13 cases and were more extensive in the lower lung zone than the upper. Central and peripheral distributions were identified in ten and nine cases, respectively. One showed diffuse distribution. Peribronchial wall thickening was found in 16 cases. Centrilobular branching nodules (n=7), interlobular septal thickening (n=4), atelectasis (n=1), pleural effusion (n=5), enlarged hilar and mediastinal lymph nodes (n=6 and n=7) were also noted. Conclusion: Patchy and bilateral GGO along bronchi with predominant involvement of lower lungs are the most common chest CT findings of pandemic influenza A/H1N1 pneumonia.

An Effects of a New PGE1: Lipo-AS013 on Blood Flow and Survival of Skin Flap (새로운 PGE1인 Lipo-AS013이 피판의 혈류와 생존에 미치는 영향)

  • Seul, Chul Hwan;Choi, Jong Woo;Chi, Yong Hoon;Tark, Kwan Chul
    • Archives of Plastic Surgery
    • /
    • v.32 no.1
    • /
    • pp.5-11
    • /
    • 2005
  • Prostaglandin $E_1$($PGE_1$) is known to have various physiological action such as vasodilatation, decrease of blood pressure, angiogenesis, inhibition of platelet aggregation and so forth. $PGE_1$ has been developed in many different formulations in order to overcome its chemical instability and deactivation in the lungs when administered parenterally. Lipo-AS013 is a potent drug with higher chemical stability and greater vascular wall targeting than others. The study was done on $3{\times}10cm$ model flap of dorsal skin of Sprague-Dawley rats and the flap perfusion survival were observed and documented. The flap treated with Lipo-AS013 beforehand was given intravenously Sodium fluorescein 10 minutes later, and then Percent Dye Fluorescence Index(% DFI) was calculated. The results were compared to a control group and the group administered locally epinephrine.. In the control group, the % DFI and flap survival rate increased from $54.1{\pm}6.7$ to $65.0{\pm}2.6$(p<0.01) while in Lipo-AS013 group from $55.3{\pm}2.2$ to $67.4{\pm}1.9$(p<0.01), respectively. In the epinephrine group, the % DFI(p<0.05) and flap survival rate(p<0.001) decreased. In the both epinephrine and Lipo-AS013 group Percent DFI and flap survival rate are comparable with the control group.The result indicates that the potent Lipo-AS013 enhances the blood flow and flap survival. This highly potent Lipo-AS013 may have targeting ability and accumulate $PGE_1$ onto the vascular walls. A quantitative analysis of fluorescence on the skin surface is a reliable tool to measure the blood perfusion into an ischemic flap and its viability. Further comparative study with conventional $PGE_1$ and Lipo-$PGE_1$ is needed in order to clarify the action and efficiency of Lipo-AS013.

Role of Iridin Isolated from Iris koreana Nakai on Doxorubicin-induced Necrosis in HK-2 Cells, and Effect on Cancer Cells (노랑붓꽃에서 분리된 Iridin의 독소루비신 유도 HK-2 세포 괴사에 대한 역할 및 암세포에 대한 작용)

  • Nho, Jong Hyun;Lee, Ki Ho;Jung, Ho Kyung;Lee, Mu Jin;Jang, Ji Hun;Sim, Mi Ok;Jung, Ja Kyun;Jung, Da Eun;Cho, Hyun Woo
    • Korean Journal of Plant Resources
    • /
    • v.31 no.2
    • /
    • pp.95-101
    • /
    • 2018
  • Doxorubicin is a anti-cancer drugs that interferes with the growth and spread of cancer cells in human body. Doxorubicin is used to treat different types of cancers that affect the ovary, thyoid and lungs, but induced side effect such as nephrotoxicity and cardiotoxicity. Thus, we investigated that the effect of iridin on doxorubicin-induced necrosis in HK-2 cells, a human proximal tubule cell. To confirm effect of iridin on doxorubicin-induced necrosis, HK-2 cells are treated with $10{\mu}M$ doxorubicin and $80{\mu}M$ iridin. $80{\mu}M$ iridin reduced $10{\mu}M$ doxorubicin-induced necrosis, the mitochondrial over activation and caspase-3 activation. However, iridin reduces anti-cancer effect of doxorubicin such as PARP1 and caspase-3 activation, checkpoint proteins (CDK4 and CDK6) in NCI-H1129 cells (Human non-small cell lung cancer cell). In HCT-116 cells (Human colorectan cancer cell), iridin do not increased protein expression of CDK4 and CDK6 decreased by doxorubicin. Results indicate that treatment of iridin was diminished doxorubicin-induced necrosis in HK-2 cells. However, iridin was decreased anti-cancer effect of doxorubicin on NCI-H1229, but not HCT-116. Thus, further experiment are required to iridin treatment on various cancer cells and animal models because effect of iridin different cell type.

Protective Effect of Nitroglycerin on the Ischemia-Reperfusion Model of the Isolated Rat Lung (흰쥐의 분리 폐장 관류 모델에서 Nitroglycerin의 폐장 보존 효과)

  • Jheon, Sang-Hoon;Lee, Sub;Lee, Jong-Hoon;Son, Bok-Kyoung;Cho, Gong-Rae;Chung, Jin-Yong;Cho, Soung-Kyung;Kim, Bong-Il;Lee, Young-Man;Choh, Joong-Haeng
    • Journal of Chest Surgery
    • /
    • v.36 no.12
    • /
    • pp.894-903
    • /
    • 2003
  • Protection against ischemia-reperfusion injury is crucial for successful transplantation of the lung. It has been known that nitric oxide has many favorable effects on the donor lungs but at the same time, has some potential side effects of cytotoxicity. In this regards, we investigated whether the administration of nitroglycerin could decrease ischemia-reperfusion injury in isolated rat lung reperfusion model for the confirmation of the effect of nitroglycerin, a donor of nitric oxide, on lung transplantation. Material and Method: 35 Sprague-Dawley species male white rats were used for this experiment. For nitroglycerin group (n=18), nitroglycerin was administered intravenously followed by mixed in flushing solution for preservation. As a control group (n=17), we used the same amount of normal saline. To evaluate the effect of nitroglycerin on the lung, heart-lung block was obtained, weighed and stored in University of Wisconsin Solution at 1$0^{\circ}C$ for 24 hours. In each group of the isolated lungs, reperfusion was carried out with Krebs-Hensleit-diluted human blood for 60 minutes. As parameters of the state of the isolated lung, peak inspiratory and pulmonary arterial pressures were continuously recorded. Oxygen and carbon dioxide tension of reperfusing blood were measured before and after 30, 60 minutes of reperfusion. After sixty minutes of reperfusion, protein content in bronchoalveolar lavage fluid was measured also for the evaluation of the degree of alveolar flooding. Lung myeloperoxidase activity was determined to verify the accumulation of neutrophils. Results: Although statistically significant differences were not noted in peak inspiratory and pulmonary arterial pressure between control and nitroglycerin group, latter group showed lowering tendency of pulmonary arterial pressure during the entire reperfusion period. Oxygen tension was higher (p<0.05) in nitroglycerin group compared with that of the control group, in contrast, there were no differences in carbon dioxide tension, protein content in bronchoalveolar lavage fluid and myeloperoxidase activity between the groups. In the examination of ultrastructural changes, nitroglycerin denoted the protective effect on the pulmonary architecture compared with that of control group. Conclusion: Collectively, on the bases of these experimental results, prior treatment of donor lung with nitroglycerin could result in better preservation of the lung. Consequently, these nitroglycerin preserved lungs are thought to be more suitable for successful transplantation of the lung.

p53 Expression Patterns in Non-small Cell Lung Cancers (비소세포 폐암에서의 p53 단백의 발현 양상)

  • Kim, Sun-Young;Hong, Seok-Cheol;Han, Pyo-Seong;Lee, Jong-Jin;Cho, Hai-Jeong;Kim, Ae-Kyoung;Kim, Ju-Ock;Lee, Sang-Sook
    • Tuberculosis and Respiratory Diseases
    • /
    • v.40 no.6
    • /
    • pp.659-668
    • /
    • 1993
  • Background: p53 is currently considered as a tumor suppressive gene product, and its alterations are suggested to be involved in several human malignancies, including non-small cell lung cancers. p53 expression rates are variable in many reports and among cell types. Also, whether the phase of p53 expression is early or late during carcinogenesis is not certain. Thus, We have investigated to evaluate p53 expression rates of the various cell types and tissues and identify expression phase (early or late). Method: We obtained 71 tissue from 50 non-small cell lung cancer patients and performed the simple immunohistochemical staining using nonspecific monoclonal antibody(NCL-p53DO7). Results: 1) In non-small cell lung cancer patients. the expression rate of lungs(46.5%) is higher than that(25.0%) of lymph nodes. But, there is no significant difference between two groups. 2) Among the various cell types, p53 expression rates in squamous cell carcinoma and adenocarcinoma are 58.3% and 50.0% respectively without significant difference. 3) p53 expression rates in various stages are 33.3%, 60.0%, 40.0%, 60.0% and 66.7% in stage I, II, IIIa, IIIb and IV, respectively with no significant difference. 4) p53 expression rates in the various T parameters are 33.3%, 50.0%, 16.7% and 100% in T1, T2, T3 and T4, respectively and p53 expression rates in the various N parameters are 27.3%, 22.2% and 25.0% in N1, N2 and N3, respectively. There are no significant differences in the expression rates among varous T & N parameters. 5) p53 expression rates of lymph nodes in patients who have positive stains in lungs are 12.5% and 50.0% in N1 and N2. 6) p53 expression rates of all lymph nodes in patients who have negative stains in lungs are 0.0%. Conclusion: The above results show that p53 expression rate in non-small cell lung cancers is not correlated with cell type and progression of stage and it is thought to need further investigations about at what phase p53 expression influences the development and progression of lung cancers.

  • PDF

Human Lung Insults due Air Pollutant -A Review for Priority Setting in the Research- (대기오염에 의한 폐장조직 손상 -연구방향의 설정을 위한 논의-)

  • 김건열;백도명
    • Journal of environmental and Sanitary engineering
    • /
    • v.7 no.2
    • /
    • pp.95-110
    • /
    • 1992
  • Much progress has been made in understanding the subcellular events of the human lung injuries after acute exposure to environmental air pollutants. Host of those events represent oxidative damages mediated by reactive oxygen species such as superoxide, hydrogen peroxide, and the hydroxy, free radical. Recently, nitric oxide (NO) was found to be endogenously produced by endothelial cells and cells of the reticulo-endothelial system as endothelialderived relaxation factor (EDRF) which is a vasoactive and neurotransmitter substance. Together with superoxide, NO can form another strong oxidant, peroxonitrite. The relative importance of exogenous sources of $N0/N0_2$ and endogenous production of NO by the EDRF producing enzymes in the oxidative stresses to the heman lung has to be elucidated. The exact events leading to chronic irreversible damage are still yet to be known. From chronic exposure to oxidant gases, progressive epithelial and interstitial damages develop. Type I epithelial cells become thicker and cover a smaller average alveolar surface area while thee II cells proliferate instead. Under acute damages, the extent of loss of the alveolar epithelial cell lining, especially type II cells appears to be a good predictor of the ensuing irreversible damage to alveolar compartment. Interstitial matrix undergo remodeling during chronic exposure with increased collagen fibers and interstitial fibroblasts. However, Inany of these changes can be reversed after cessation of exposure. Among chronic lung injuries, genetic damages and repair responses received particular attention in view of the known increased lung cancer risks from exposure to several air pollutants. Heavy metals from foundry emission, automobile traffics, and total suspended particulate, especially polycystic aromatic hydrocarbons have been positively linked with the development of lung cancer. Asbestos in another air pollutant with known risk of lung cancer and mesothelioma, but asbestos fibers are nonauthentic in most bioassays. Studies using the electron spin resonance spin trapping method show that the presence of iron in asbestos accelerates the production of the hydroxy, radical in vitro. Interactions of these reactive oxygen species with particular cellular components and disruption of cell defense mechanisms still await further studies to elucidate the carcinogenic potential of asbestos fibers of different size and chemical composition. The distribution of inhaled pollutants and the magnitude of their eventual effects on the respiratory tract are determined by pollutant-independent physical factors such as anatomy of the respiratory tract and level and pattern of breathing, as well as by pollutant-specific phyco-chemical factors such as the reactivity, solubility, and diffusivity of the foreign gas in mucus, blood and tissue. Many of these individual factors determining dose can be quantified in vitro. However, mathematical models based on these factors should be validated for its integrity by using data from intact human lungs.

  • PDF

Role of IL-10 Deficiency in Pneumonia Induced by Corynebacterium kutscheri in Mice

  • Jeong, Eui-Suk;Won, Young-Suk;Kim, Hyoung-Chin;Cho, Myung-Hawn;Choi, Yang-Kyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.4
    • /
    • pp.424-430
    • /
    • 2009
  • IL-10 is an important anti-inflammatory cytokine that can inhibit the production of many pro-inflammatory cytokines. Both human and animal studies have shown that pro-inflammatory cytokines play an important role in pneumonia and other inflammatory lung diseases. In the present study, IL-10 knockout(KO) and wild-type mice were infected with Corynebacterium kutscheri to determine whether the severity of pathogenesis and whether protective immunity could be altered in the absence of IL-10. The survival rate was significantly lower in IL-10 KO mice than wild-type mice. The number of neutrophils in bronchoalveolar lavage fluid and blood were found to be higher in IL-10 KO mice than wild-type mice. IL-10 KO mice showed greater neutrophil infiltration, excessive inflammation, and weight-loss compared with wild-type mice. Furthermore, upregulation of IFN-$\gamma$ in bronchoalveolar lavage fluid, and upregulation of MIP-$1{\alpha}$ and IP-10 mRNA in the lungs of IL-10 KO mice compared with wild-type mice after C. kutscheri infection were observed. These results suggest that IL-10 plays an important role in the anti-inflammatory properties against C. kutscheri infection, and that lack of IL-10 leads to a more severe pulmonary inflammatory response. This increased susceptibility to C. kutscheri pneumonia is at least in part caused by IL-10 deficiency and severe recruitment of neutrophils.