Browse > Article
http://dx.doi.org/10.4062/biomolther.2021.120

A New Murine Liver Fibrosis Model Induced by Polyhexamethylene Guanidine-Phosphate  

Kim, Minjeong (College of Pharmacy, Ewha Womans University)
Hur, Sumin (Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University)
Kim, Kwang H. (Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University)
Cho, Yejin (Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University)
Kim, Keunyoung (College of Pharmacy, Kangwon National University)
Kim, Ha Ryong (College of Pharmacy, Daegu Catholic University)
Nam, Ki Taek (Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University)
Lim, Kyung-Min (College of Pharmacy, Ewha Womans University)
Publication Information
Biomolecules & Therapeutics / v.30, no.2, 2022 , pp. 126-136 More about this Journal
Abstract
Liver fibrosis is part of the wound healing process to help the liver recover from the injuries caused by various liver-damaging insults. However, liver fibrosis often progresses to life-threatening cirrhosis and hepatocellular carcinoma. To overcome the limitations of current in vivo liver fibrosis models for studying the pathophysiology of liver fibrosis and establishing effective treatment strategies, we developed a new mouse model of liver fibrosis using polyhexamethylene guanidine phosphate (PHMG-p), a humidifier sterilizer known to induce lung fibrosis in humans. Male C57/BL6 mice were intraperitoneally injected with PHMG-p (0.03% and 0.1%) twice a week for 5 weeks. Subsequently, liver tissues were examined histologically and RNA-sequencing was performed to evaluate the expression of key genes and pathways affected by PHMG-p. PHMG-p injection resulted in body weight loss of ~15% and worsening of physical condition. Necropsy revealed diffuse fibrotic lesions in the liver with no effect on the lungs. Histology, collagen staining, immunohistochemistry for smooth muscle actin and collagen, and polymerase chain reaction analysis of fibrotic genes revealed that PHMG-p induced liver fibrosis in the peri-central, peri-portal, and capsule regions. RNA-sequencing revealed that PHMG-p affected several pathways associated with human liver fibrosis, especially with upregulation of lumican and IRAK3, and downregulation of GSTp1 and GSTp2, which are closely involved in liver fibrosis pathogenesis. Collectively we demonstrated that the PHMG-p-induced liver fibrosis model can be employed to study human liver fibrosis.
Keywords
Liver fibrosis; Polyhexamethylene guanidine phosphate (PHMG-p); Murine liver fibrosis model; Lumican; IRAK3;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Bindea, G., Mlecnik, B., Hackl, H., Charoentong, P., Tosolini, M., Kirilovsky, A., Fridman, W. H., Pages, F., Trajanoski, Z. and Galon, J. (2009) ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25, 1091-1093.   DOI
2 Bonacchi, A., Petrai, I., Defranco, R. M., Lazzeri, E., Annunziato, F., Efsen, E., Cosmi, L., Romagnani, P., Milani, S., Failli, P., Batignani, G., Liotta, F., Laffi, G., Pinzani, M., Gentilini, P. and Marra, F. (2003) The chemokine CCL21 modulates lymphocyte recruitment and fibrosis in chronic hepatitis C. Gastroenterology 125, 1060-1076.   DOI
3 Charlton, M., Viker, K., Krishnan, A., Sanderson, S., Veldt, B., Kaalsbeek, A. J., Kendrick, M., Thompson, G., Que, F., Swain, J. and Sarr, M. (2009) Differential expression of lumican and fatty acid binding protein-1: new insights into the histologic spectrum of nonalcoholic fatty liver disease. Hepatology 49, 1375-1384.   DOI
4 De Minicis, S. and Brenner, D. A. (2007) NOX in liver fibrosis. Arch. Biochem. Biophys. 462, 266-272.   DOI
5 Dong, S., Chen, Q. L., Song, Y. N., Sun, Y., Wei, B., Li, X. Y., Hu, Y. Y., Liu, P. and Su, S. B. (2016) Mechanisms of CCl4-induced liver fibrosis with combined transcriptomic and proteomic analysis. J. Toxicol. Sci. 41, 561-572.   DOI
6 elSisi, A. E., Hall, P., Sim, W. L., Earnest, D. L. and Sipes, I. G. (1993) Characterization of vitamin A potentiation of carbon tetrachloride-induced liver injury. Toxicol. Appl. Pharmacol. 119, 280-288.   DOI
7 Fernandez-Checa, J. C., Kaplowitz, N., Garcia-Ruiz, C. and Colell, A. (1998) Mitochondrial glutathione: importance and transport. Semin. Liver Dis. 18, 389-401.   DOI
8 Finkel, T. (1998) Oxygen radicals and signaling. Curr. Opin. Cell Biol. 10, 248-253.   DOI
9 Gao, J., Qin, X. J., Jiang, H., Chen, J. F., Wang, T., Zhang, T., Xu, S. Z. and Song, J. M. (2017) Detecting serum and urine metabolic profile changes of CCl4-liver fibrosis in rats at 12 weeks based on gas chromatography-mass spectrometry. Exp. Ther. Med. 14, 1496-1504.   DOI
10 Gentleman, R. C., Carey, V. J., Bates, D. M., Bolstad, B., Dettling, M., Dudoit, S., Ellis, B., Gautier, L., Ge, Y., Gentry, J., Hornik, K., Hothorn, T., Huber, W., Iacus, S., Irizarry, R., Leisch, F., Li, C., Maechler, M., Rossini, A. J., Sawitzki, G., Smith, C., Smyth, G., Tierney, L., Yang, J. Y. and Zhang, J. (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5, R80.   DOI
11 George, J., Tsuchishima, M. and Tsutsumi, M. (2019) Molecular mechanisms in the pathogenesis of N-nitrosodimethylamine induced hepatic fibrosis. Cell Death Dis. 10, 18.   DOI
12 Guimaraes, E. L., Empsen, C., Geerts, A. and van Grunsven, L. A. (2010) Advanced glycation end products induce production of reactive oxygen species via the activation of NADPH oxidase in murine hepatic stellate cells. J. Hepatol. 52, 389-397.   DOI
13 Lang, D., Knop, J., Wesche, H., Raffetseder, U., Kurrle, R., Boraschi, D. and Martin, M. U. (1998) The type II IL-1 receptor interacts with the IL-1 receptor accessory protein: a novel mechanism of regulation of IL-1 responsiveness. J. Immunol. 161, 6871-6877.   DOI
14 Soni, D., Wang, D. M., Regmi, S. C., Mittal, M., Vogel, S. M., Schluter, D. and Tiruppathi, C. (2018) Deubiquitinase function of A20 maintains and repairs endothelial barrier after lung vascular injury. Cell Death Discov. 4, 60.   DOI
15 Ippolito, D. L., AbdulHameed, M. D., Tawa, G. J., Baer, C. E., Permenter, M. G., McDyre, B. C., Dennis, W. E., Boyle, M. H., Hobbs, C. A., Streicker, M. A., Snowden, B. S., Lewis, J. A., Wallqvist, A. and Stallings, J. D. (2016) Gene expression patterns associated with histopathology in toxic liver fibrosis. Toxicol. Sci. 149, 67-88.   DOI
16 Mann, J. and Mann, D. A. (2009) Transcriptional regulation of hepatic stellate cells. Adv. Drug Deliv. Rev. 61, 497-512.   DOI
17 Wobser, H., Dorn, C., Weiss, T. S., Amann, T., Bollheimer, C., Buttner, R., Scholmerich, J. and Hellerbrand, C. (2009) Lipid accumulation in hepatocytes induces fibrogenic activation of hepatic stellate cells. Cell Res. 19, 996-1005.   DOI
18 Nishikawa, T., Bellance, N., Damm, A., Bing, H., Zhu, Z., Handa, K., Yovchev, M. I., Sehgal, V., Moss, T. J., Oertel, M., Ram, P. T., Pipinos, II, Soto-Gutierrez, A., Fox, I. J. and Nagrath, D. (2014) A switch in the source of ATP production and a loss in capacity to perform glycolysis are hallmarks of hepatocyte failure in advance liver disease. J. Hepatol. 60, 1203-1211.   DOI
19 Quinlan, A. R. and Hall, I. M. (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841-842.   DOI
20 Shim, H. E., Lee, J. Y., Lee, C. H., Mushtaq, S., Song, H. Y., Song, L., Choi, S. J., Lee, K. and Jeon, J. (2018) Quantification of inhaled aerosol particles composed of toxic household disinfectant using radioanalytical method. Chemosphere 207, 649-654.   DOI
21 Tazi, K. A., Quioc, J. J., Saada, V., Bezeaud, A., Lebrec, D. and Moreau, R. (2006) Upregulation of TNF-alpha production signaling pathways in monocytes from patients with advanced cirrhosis: possible role of Akt and IRAK-M. J. Hepatol. 45, 280-289.   DOI
22 Terblanche, J. and Hickman, R. (1991) Animal models of fulminant hepatic failure. Dig. Dis. Sci. 36, 770-774.   DOI
23 Tsukamoto, H., Matsuoka, M. and French, S. W. (1990) Experimental models of hepatic fibrosis: a review. Semin. Liver Dis. 10, 56-65.   DOI
24 Langmead, B. and Salzberg, S. L. (2012) Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357-359.   DOI
25 Lee, K. S., Buck, M., Houglum, K. and Chojkier, M. (1995) Activation of hepatic stellate cells by TGF alpha and collagen type I is mediated by oxidative stress through c-myb expression. J. Clin. Invest. 96, 2461-2468.   DOI
26 Wang, Y., Hu, Y., Chao, C., Yuksel, M., Colle, I., Flavell, R. A., Ma, Y., Yan, H. and Wen, L. (2013) Role of IRAK-M in alcohol induced liver injury. PLoS ONE 8, e57085.   DOI
27 Yasuda, M., Shimizu, I., Shiba, M. and Ito, S. (1999) Suppressive effects of estradiol on dimethylnitrosamine-induced fibrosis of the liver in rats. Hepatology 29, 719-727.   DOI
28 McLean, E. K., McLean, A. E. and Sutton, P. M. (1969) Instant cirrhosis. An improved method for producing cirrhosis of the liver in rats by simultaneous administration of carbon tetrachloride and phenobarbitone. Br. J. Exp. Pathol. 50, 502-506.
29 Liu, X., Dai, R., Ke, M., Suheryani, I., Meng, W. and Deng, Y. (2017) Differential proteomic analysis of dimethylnitrosamine (dmn)-induced liver fibrosis. Proteomics 17, 1700267.   DOI
30 Lua, I., Li, Y., Zagory, J. A., Wang, K. S., French, S. W., Sevigny, J. and Asahina, K. (2016) Characterization of hepatic stellate cells, portal fibroblasts, and mesothelial cells in normal and fibrotic livers. J. Hepatol. 64, 1137-1146.   DOI
31 Mederacke, I., Hsu, C. C., Troeger, J. S., Huebener, P., Mu, X., Dapito, D. H., Pradere, J. P. and Schwabe, R. F. (2013) Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nat. Commun. 4, 2823.   DOI
32 Park, D. (2013) Review of humidifier lung cases caused by use of humidifier-focusing on probable environmental causal agents. Korean J. Environ. Health Sci. 39, 105-116.   DOI
33 Schuppan, D. and Afdhal, N. H. (2008) Liver cirrhosis. Lancet 371, 838-851.   DOI
34 Phillips, M. J. and Poucell, S. (1981) Modern aspects of the morphology of viral hepatitis. Hum. Pathol. 12, 1060-1084.   DOI
35 Li, Y., Wang, J. and Asahina, K. (2013) Mesothelial cells give rise to hepatic stellate cells and myofibroblasts via mesothelial-mesenchymal transition in liver injury. Proc. Natl. Acad. Sci. U.S.A. 110, 2324-2329.   DOI
36 Chakravarti, S. (2002) Functions of lumican and fibromodulin: lessons from knockout mice. Glycoconj. J. 19, 287-293.   DOI
37 Mohammadzadeh, N., Lunde, I. G., Andenaes, K., Strand, M. E., Aronsen, J. M., Skrbic, B., Marstein, H. S., Bandlien, C., Nygard, S., Gorham, J., Sjaastad, I., Chakravarti, S., Christensen, G., Engebretsen, K. V. T. and Tonnessen, T. (2019) The extracellular matrix proteoglycan lumican improves survival and counteracts cardiac dilatation and failure in mice subjected to pressure overload. Sci. Rep. 9, 9206.   DOI
38 Saeed, A. I., Sharov, V., White, J., Li, J., Liang, W., Bhagabati, N., Braisted, J., Klapa, M., Currier, T., Thiagarajan, M., Sturn, A., Snuffin, M., Rezantsev, A., Popov, D., Ryltsov, A., Kostukovich, E., Borisovsky, I., Liu, Z., Vinsavich, A., Trush, V. and Quackenbush, J. (2003) TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34, 374-378.   DOI
39 Albanis, E. and Friedman, S. L. (2006) Antifibrotic agents for liver disease. Am. J. Transplant. 6, 12-19.   DOI
40 Iwaisako, K., Jiang, C., Zhang, M., Cong, M., Moore-Morris, T. J., Park, T. J., Liu, X., Xu, J., Wang, P., Paik, Y. H., Meng, F., Asagiri, M., Murray, L. A., Hofmann, A. F., Iida, T., Glass, C. K., Brenner, D. A. and Kisseleva, T. (2014) Origin of myofibroblasts in the fibrotic liver in mice. Proc. Natl. Acad. Sci. U.S.A. 111, E3297-E3305.
41 Asahina, K., Zhou, B., Pu, W. T. and Tsukamoto, H. (2011) Septum transversum-derived mesothelium gives rise to hepatic stellate cells and perivascular mesenchymal cells in developing mouse liver. Hepatology 53, 983-995.   DOI
42 Asiedu-Gyekye, I. J., Mahmood, S. A., Awortwe, C. and Nyarko, A. K. (2014) A preliminary safety evaluation of polyhexamethylene guanidine hydrochloride. Int. J. Toxicol. 33, 523-531.   DOI
43 Balog, S., Li, Y., Ogawa, T., Miki, T., Saito, T., French, S. W. and Asahina, K. (2020) Development of capsular fibrosis beneath the liver surface in humans and mice. Hepatology 71, 291-305.   DOI
44 Barbariga, M., Vallone, F., Mosca, E., Bignami, F., Magagnotti, C., Fonteyne, P., Chiappori, F., Milanesi, L., Rama, P., Andolfo, A. and Ferrari, G. (2019) The role of extracellular matrix in mouse and human corneal neovascularization. Sci. Rep. 9, 14272.   DOI
45 Singer, J. W., Fleischman, A., Al-Fayoumi, S., Mascarenhas, J. O., Yu, Q. and Agarwal, A. (2018) Inhibition of interleukin-1 receptor-associated kinase 1 (IRAK1) as a therapeutic strategy. Oncotarget 9, 33416-33439.   DOI
46 Solodun, Y. V., Monakhova, Y. B., Kuballa, T., Samokhvalov, A. V., Rehm, J. and Lachenmeier, D. W. (2011) Unrecorded alcohol consumption in Russia: toxic denaturants and disinfectants pose additional risks. Interdiscip. Toxicol. 4, 198-205.   DOI
47 Song, G., Hu, C., Zhu, H., Li, X., Zhao, L., Zhou, R., Zhang, X., Zhang, F., Wu, L. and Li, Y. (2013) Comparative proteomics study on liver mitochondria of primary biliary cirrhosis mouse model. BMC Gastroenterol. 13, 64.   DOI
48 Bechmann, L. P., Zahn, D., Gieseler, R. K., Fingas, C. D., Marquitan, G., Jochum, C., Gerken, G., Friedman, S. L. and Canbay, A. (2009) Resveratrol amplifies profibrogenic effects of free fatty acids on human hepatic stellate cells. Hepatol. Res. 39, 601-608.   DOI
49 Bataller, R. and Gao, B. (2015) Liver fibrosis in alcoholic liver disease. Semin. Liver Dis. 35, 146-156.   DOI
50 Brzezinska, M. S., Walczak, M., Jankiewicz, U. and Pejchalova, M. (2018) Antimicrobial activity of polyhexamethylene guanidine derivatives introduced into polycaprolactone. J. Polym. Environ. 26, 589-595.   DOI
51 Sundaresan, M., Yu, Z. X., Ferrans, V. J., Irani, K. and Finkel, T. (1995) Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270, 296-299.   DOI
52 Thannickal, V. J., Day, R. M., Klinz, S. G., Bastien, M. C., Larios, J. M. and Fanburg, B. L. (2000) Ras-dependent and -independent regulation of reactive oxygen species by mitogenic growth factors and TGF-beta1. FASEB J. 14, 1741-1748.   DOI
53 Kanehisa, M. and Goto, S. (2000) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27-30.   DOI
54 Song, J., Jung, K. J., Yang, M. J., Han, S. C. and Lee, K. (2021) Assessment of acute and repeated pulmonary toxicities of oligo(2-(2-ethoxy)ethoxyethyl guanidium chloride in mice. Toxicol. Res. 37, 99-113.   DOI
55 Chang, Y., He, J., Xiang, X. and Li, H. (2021) LUM is the hub gene of advanced fibrosis in nonalcoholic fatty liver disease patients. Clin. Res. Hepatol. Gastroenterol. 45, 101435.   DOI
56 Diamond, D. L., Jacobs, J. M., Paeper, B., Proll, S. C., Gritsenko, M. A., Carithers, R. L., Jr., Larson, A. M., Yeh, M. M., Camp, D. G., 2nd, Smith, R. D. and Katze, M. G. (2007) Proteomic profiling of human liver biopsies: hepatitis C virus-induced fibrosis and mitochondrial dysfunction. Hepatology 46, 649-657.   DOI
57 Bhunchet, E. and Wake, K. (1992) Role of mesenchymal cell populations in porcine serum-induced rat liver fibrosis. Hepatology 16, 1452-1473.   DOI
58 Ishak, K. G. (1994) Chronic hepatitis: morphology and nomenclature. Mod. Pathol. 7, 690-713.
59 Ismail, M. H. and Pinzani, M. (2009) Reversal of liver fibrosis. Saudi J. Gastroenterol. 15, 72-79.   DOI
60 Jiao, X., Sherman, B. T., Huang da, W., Stephens, R., Baseler, M. W., Lane, H. C. and Lempicki, R. A. (2012) DAVID-WS: a stateful web service to facilitate gene/protein list analysis. Bioinformatics 28, 1805-1806.   DOI
61 Lander, H. M. (1997) An essential role for free radicals and derived species in signal transduction. FASEB J. 11, 118-124.   DOI
62 Kim, H. R., Lee, K., Park, C. W., Song, J. A., Shin, D. Y., Park, Y. J. and Chung, K. H. (2016) Polyhexamethylene guanidine phosphate aerosol particles induce pulmonary inflammatory and fibrotic responses. Arch. Toxicol. 90, 617-632.   DOI
63 Krahenbuhl, S., Brass, E. P. and Hoppel, C. L. (2000) Decreased carnitine biosynthesis in rats with secondary biliary cirrhosis. Hepatology 31, 1217-1223.   DOI