• 제목/요약/키워드: human intestinal bacteria

검색결과 192건 처리시간 0.025초

Screening and Biotransformation of Interleukin-1$\beta$ Converting Enzyme Production Inhibitors from Arctii fructus

  • KIM HYUN A;YOON DO YOUNG;LEE SANG MYUNG;BAEK SEUNG HWA;HAN GYOON HEE;KHO YOUNG HEE;LEE CHOONG HWAN
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권2호
    • /
    • pp.269-273
    • /
    • 2005
  • Five dibenzylbutyrolactones were isolated from a methanol extract of Arctii fructus (Arctium lappa L.) by bioassay-guided isolation, using the interleukin-l $\beta$ converting enzyme (caspase-l, ICE) production inhibitory assay in vitro. These compounds were spectroscopically identified as lappaol E (1), lappaol A (2), matairesinol (3), arctigenin (4), and arctiin (5). Among the compounds tested, arctigenin (4) showed the strongest inhibitory activity for ICE production in IL-$\beta$-induced proliferation of D 1 OS cells. Western blot analysis demonstrated that the arctigenin suppressed the expression of ICE protein in a dose-dependent manner. To estimate the biotransformation of Arctii fructus in vivo by human intestinal bacteria, we carried out an anaerobic incubation of the Arctii fructus extract with a human fecal suspension. From the HPLC analysis of metabolites, Arctiin (IC$_{50}$=74.2$\mu$g/ml), a major component of Arctii fructus, was transformed to aglycone, arctigenin (IC$_{50}$=12.5$\mu$g/ml), by human intestinal bacteria. The ICE production inhibitory activity of Arctii fructus would be much stronger in vivo than in vitro due to the biotransformation by human intestinal bacteria.

Lactic Acid Bacteria Isolated from Human Breast Milk Improve Colitis Induced by 2,4,6-Trinitrobenzene Sulfonic Acid by Inhibiting NF-κB Signaling in Mice

  • Kyung-Joo Kim;Suhyun Kyung;Hui Jin;Minju Im;Jae-won Kim;Hyun Su Kim;Se-Eun Jang
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권8호
    • /
    • pp.1057-1065
    • /
    • 2023
  • Inflammatory bowel disease (IBD), a chronic inflammatory disease, results from dysregulation of the immune responses. Some lactic acid bacteria (LAB), including Lactobacillus, alleviate IBD through immunomodulation. In this study, the anti-colitis effect of LAB isolated from human breast milk was investigated in a mouse model induced acute colitis with 2,4,6-trinitrobenzene sulfonic acid (TNBS). TNBS remarkably increased weight loss, colon shortening, and colonic mucosal proliferation, as well as the expression levels of inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-1β. Oral administration of LAB isolated from human breast milk resulted in a reduction in TNBS-induced colon shortening, as well as induced cyclooxygenase (COX)-2, nitric oxide synthase (iNOS), nuclear factor-kappa B (NF-κB). In addition, LAB suppressed inflammatory cytokines such as TNF-α, IL-6, and IL-1β, and thus showed an effect of suppressing the level of inflammation induced by TNBS. Furthermore, LAB alleviated gut microbiota dysbiosis, and inhibited intestinal permeability by increasing the expression of intestinal tight junction protein including ZO-1. Collectively, these results suggest that LAB isolated from human breast milk can be used as a functional food for colitis treatment by regulating NF-κB signaling, gut microbiota and increasing expression of intestinal tight junction protein.

Antimicrobial Activity of Quinoline Derivatives Isolated from Ruta chalepensis Toward Human Intestinal Bacteria

  • CHO JANG-HEE;LEE CHI-HOON;LEE HOI-SEON
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권3호
    • /
    • pp.646-651
    • /
    • 2005
  • The growth responses of Ruta chalepensis leaf-derived materials toward human intestinal bacteria were examined. The biologically active constituent of the R. chalepensis extract was characterized as quinoline-4-carboxaldehyde($C_{10}H_{7}NO$). The growth responses varied depending on the bacterial strain, chemicals, and dose tested. At 0.25 and 0.1 mg/disk, quinoline-4-carboxaldehyde strongly inhibited the growth of Clostridium perfringens and weakly inhibited the growth of Escherichia coli without any adverse effects on the growth of three lactic acid bacteria. Furthermore, at 0.05 and 0.025 mg/disk, this isolate showed moderate activity against C. perfringens. In comparison, chloramphenicol at as low as 0.01 mg/disk significantly inhibited the growth of all bacteria tested, and cinnamaldehyde at 0.25 mg/disk did not inhibit Bifidobacterium bifidum, B. longum, E. coli, and Lactobacillus acidophilus, with the exception of C. perfringens. The structure-activity relationship revealed that quinoline-3-carboxaldehyde had strong growth inhibition against C. perfringens, but quinoline, quinoline-3-carboxylic acid, and quinoline-4-carboxylic acid did not inhibit the growth of B. bifidum, B. longum, C. perfringens, E. coli, and L. acidophilus. These results indicate that the carboxyl aldehyde functional group of quinolines seems to be required for growth-inhibiting activity against C. perfringens, thus indicating at least one of the pharmacological actions of R. chalepensis leaf.

Bacillus licheniformis AJ 균주제제의 설사원인 미생물의 성장 억제효과 (Inhibitory Activity of Bacillus licheniformis AJ on the Growth of Diarrheal Pathogens)

  • 김지영;배은아;한명주;김동현
    • Biomolecules & Therapeutics
    • /
    • 제7권4호
    • /
    • pp.385-389
    • /
    • 1999
  • The injibitory effect of Bacillus licheniformis AJ isolated from genitourinary normal flora as a new probiotics on the growth of diarrheal pathogens was studied. This B. licheniformis AJ inhibited the growth of E.coli O-157. Salmonella typhi and Shigella sonnei as well as the infectivity of rotavirus. However, it did not inhibit the growth of Helicobacter pyloriand human intestinal bacteria although it inhibited the harmful enzyme activity of human intestinal bacteria. B. licheniformis AJ seems to excret heat-lable growth-inhibitory protein, bacteriocin, into the media. These results suggest that B. lichenoformis AJ could be used as a new type of probiotics.

  • PDF

2'-Fucosyllactose가 마우스 배변 및 장내 미생물에 미치는 영향 (Effects of 2'-Fucosyllactyose on Defecation and Intestinal Microbiota in Mice)

  • 김한해;김연지;김광연;신철수;윤종원;전선민;김보미;방정수;김경호
    • 한국식품영양학회지
    • /
    • 제36권3호
    • /
    • pp.193-201
    • /
    • 2023
  • Prebiotics are known as components of intestinal microbiota that can improve and maintain human health status by stimulating the growth and activity of the intestinal tract as a method of controlling the intestinal environment. In this study, we examined whether 2'-fucosyllactose (FL) could affect intestinal microbial population and bowel activity. Water content and frequency of mouse feces were increased in the 2'-FL treated group at a high concentration (1,000 mg/kg), with brightness of the color enhanced and physical properties diluted. In addition, intestinal microbial analysis showed that harmful bacteria Clostridium and Staphylococcus strains were decreased and beneficial bacteria such as Lactobacillus strains were markedly increased in the group treated with a high concentration of 2'-FL compared to those in the control group. These findings suggest that administration of 2'-FL can maintain healthy bowel activity by reducing harmful bacteria population and improving diluted physical properties.

Biotransformation of Glycyrrhizin by Human Intestinal Bacteria and its Relation to Biological Activities

  • Kim, Dong-Hyun;Hong, Sung-Woon;Kim, Byung-Taek;Bae, Eun-Ah;Park, Hae-Young;Han, Myung-Joo
    • Archives of Pharmacal Research
    • /
    • 제23권2호
    • /
    • pp.172-173
    • /
    • 2000
  • The relationship between the metabolites of glycyrrhizin (18$\beta$-glycyrrhetinic acid-3-O--D-glu-curonopyranosyl-($1{\rightarrow}2$)-$\beta$-D-glucuronide, CL) and their biological activities was investigated. By human intestinal microflora, CL was metabolized to 18$\beta$-glycyrrhetinic acid (GA) as a main product and to 18$\beta$-glycyrrhetinic acid-3-O-$\beta$-D-glucuronide (GAMG) as a minor product. The former reaction was catalyzed by Eubacterium L-8 and the latter was by Streptococcus LJ-22. Among GL and its metabolites, GA and GAMG had more potent in vitro anti-platelet aggregation activity than GL. GA also showed the most potent cytotoxicity against tumor cell lines and the potent inhibitory activity on rotavirus infection as well as growth of Helicobacter pylori. GAMG, the minor metabolite of GL, was the sweetest.

  • PDF

인체장모델시스템에 의한 열무김치로부터 프로바이오틱스 균주 선발 (Selection of Probiotic Bacteria from Yulmoo Kimchi Using a Stimulated Human Intestinal Model System)

  • 강미란;김다람;김태운;박성희;김현주;장자영;한응수
    • 한국식품영양과학회지
    • /
    • 제41권3호
    • /
    • pp.396-401
    • /
    • 2012
  • 열무김치로부터 김치유산균을 분리하고 프로바이오틱스로 이용 가능한 균주를 선발하기 위하여 인체의 장관과 유사한 인체장모델시스템(SHIMS)을 이용한 in silico 실험을 수행하였다. 열무김치에서 분리한 5종과 표준균주 12종에 대해 내산성 및 내담즙산성을 시험하여 생존율이 높은 2종의 균주를 선발하였다. 선발한 균주를 SHIMS에서 시험하여 가장 높은 생존율을 나타낸 균주의 16S rRNA를 분석한 결과 Leu. mesenteroides로 동정되었으며 이 김치유산균을 Leu. mesenteroides K01으로 명명하였다. 이 균주는 SHIMS에서 생존율이 높았기 때문에 프로바이오틱스로 다양하게 이용할 가치가 있다고 판단된다.

Growth-Inhibiting Effects of Vegetable Extracts on Beneficial and Harmful Human Intestinal Bacteria

  • Kim, Moo-Key;Kim, Min-Jeong;Shin, Dong-Hwa;Song, Chul-Gyu;Lee, Hoi-Seon
    • Journal of Applied Biological Chemistry
    • /
    • 제44권2호
    • /
    • pp.65-70
    • /
    • 2001
  • Ethanol extracts of 38 vegetables were subjected to an in vitro screening for their growth-inhibitory activities towards Bifidobacterium bifidum, B. longum, Clostridium perfringens, Lactobacillus acidophilus, L. casei, and Escherichia coli using paper disc agar diffusion methods under anaerobic conditions. The responses varied with both bacterial strain and vegetable species. In a test with 20 mg/disc, Zingiber officinale extracts showed significant growth-inhibitory responses against B. bifidum, and strong inhibitions against L. casei were detected in the extracts of Chrysanthemum coronarium var. spatiosum and Lactuca sativa. The extracts of Allium sativum, Capsicum annuum, L. esculentum, L. esculentum var. cerasiforme, and Z. officinale showed strong inhibitory activities against C. perfringens, while moderate growth-inhibitory responses were observed in the extracts of C. ffutescens, Cucurbita moschata, Daucus carota var. sativa, and Rubus coreanus. However, all vegetable extracts showed no inhibitions against B. longum, L. acidophilus, and E. coli. In tests with 5 mg/disc, moderate inhibitions were observed in the extracts of C. coronarium var. spatiosum and L. sativa against L. casei and Z. officinale against B. bifidum. Vegetables extracts, except for C. coronarium var. spatiosum, L. sativa, and Z. officinale, did not affect the growth of beneficial bacteria. Strong inhibitory responses against C. perfringens were detected in the extracts of C. annuum and L. esculentum var. cerasiforme. Daily intake of vegetables may be important in the prevention of human diseases caused by the intestinal bacteria.

  • PDF

침습성 세균 감염에 의한 사람 장상피세포에서의 Cyclooxygenase-2 발현 및 이의 발현이 상피세포 Apoptosis에 미치는 영향 (Expression of Cyclooxygenase-2 in Intestinal Epithelial Cells in Response to Invasive Bacterial Infection and its Role of Epithelial Cell Apoptosis)

  • 김정목;강신재;조양자
    • 대한미생물학회지
    • /
    • 제34권5호
    • /
    • pp.479-489
    • /
    • 1999
  • Invasion of enteric bacteria, such as Salmonella and invasive E. coli, into intestinal epithelial cells induces proinflammatory gene responses and finally epithelial cell apoptosis. In this study, we asked whether invasive bacterial infection of human intestinal epithelial cells could upregulate cyclooxygenase-2 (COX-2) gene expression and whether increased COX-2 expression could influence intestinal epithelial cell apoptosis. Expression of COX-2 mRNA and prostaglandin (PG) $E_2$ production were upregulated in HT-29 colon epithelial cells which were infected with S. dublin or invasive E. coli, as examined by quantitative RT-PCR and radioimmunoassay. Inhibition of COX-2 expression and $PGE_2$ production using NS-398, a specific COX-2 inhibitor, showed a significant increase of epithelial cell apoptosis and caspase-3 activation in HT-29 cells infected with invasive bacteria. However, the addition of valerylsalicylate, a specific COX-1 inhibitor, did not change apoptosis in S. dublin-infected HT-29 cells. These results suggest that up regulated COX-2 expression and $PGE_2$ production in response to invasive bacterial infection could contribute to host defense by inhibiting apoptosis of intestinal epithelial cells.

  • PDF