Browse > Article

Antimicrobial Activity of Quinoline Derivatives Isolated from Ruta chalepensis Toward Human Intestinal Bacteria  

CHO JANG-HEE (Research Center for Industrial Development of Biofood Materials and Faculty of Biotechnology, College of Agriculture & Life Science, Chonbuk National University)
LEE CHI-HOON (Research Center for Industrial Development of Biofood Materials and Faculty of Biotechnology, College of Agriculture & Life Science, Chonbuk National University)
LEE HOI-SEON (Research Center for Industrial Development of Biofood Materials and Faculty of Biotechnology, College of Agriculture & Life Science, Chonbuk National University)
Publication Information
Journal of Microbiology and Biotechnology / v.15, no.3, 2005 , pp. 646-651 More about this Journal
Abstract
The growth responses of Ruta chalepensis leaf-derived materials toward human intestinal bacteria were examined. The biologically active constituent of the R. chalepensis extract was characterized as quinoline-4-carboxaldehyde($C_{10}H_{7}NO$). The growth responses varied depending on the bacterial strain, chemicals, and dose tested. At 0.25 and 0.1 mg/disk, quinoline-4-carboxaldehyde strongly inhibited the growth of Clostridium perfringens and weakly inhibited the growth of Escherichia coli without any adverse effects on the growth of three lactic acid bacteria. Furthermore, at 0.05 and 0.025 mg/disk, this isolate showed moderate activity against C. perfringens. In comparison, chloramphenicol at as low as 0.01 mg/disk significantly inhibited the growth of all bacteria tested, and cinnamaldehyde at 0.25 mg/disk did not inhibit Bifidobacterium bifidum, B. longum, E. coli, and Lactobacillus acidophilus, with the exception of C. perfringens. The structure-activity relationship revealed that quinoline-3-carboxaldehyde had strong growth inhibition against C. perfringens, but quinoline, quinoline-3-carboxylic acid, and quinoline-4-carboxylic acid did not inhibit the growth of B. bifidum, B. longum, C. perfringens, E. coli, and L. acidophilus. These results indicate that the carboxyl aldehyde functional group of quinolines seems to be required for growth-inhibiting activity against C. perfringens, thus indicating at least one of the pharmacological actions of R. chalepensis leaf.
Keywords
Clostridium perfringens; inhibition; intestinal bacteria; quinoline-4-carboxaldehyde; Ruta chalepensis;
Citations & Related Records

Times Cited By Web Of Science : 6  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Granum, P. E. 1990. Clostridium perfringens toxins involved in food poisoning. Int. J. Food Microbiol. 10: 101-112   DOI   PUBMED   ScienceOn
2 Nowak, J. and K. H. Steinkraus. 1988. Effect of tempeh fermentation of peas on their potential flatulence productivity as measured by gas production and growth of Clostridium perfringens. Nutr. Rep. Int. 38: 1163-1171
3 Phuapradit, P., W. Varavithya, K. Vathanophas, R. Sangchai, A. Podhipak, U. Suthutvoravut, S. Nopchinda, V. Chantraruksa, and F. Haschke. 1999. J. Med. Assoc. Thailand 1: 43-48
4 Salminen, S., E. Isolauri, and E. Salminen. 1984. Clinical uses of probiotics for stabilizing the gut mucosal barrier: Successful strains and future challenges. Antonie van Leeuwenhoek 70: 347-358   DOI   ScienceOn
5 Skar, V., A. G. Skar, and J. H. Sromme. 1988. Beta-glucuronidase activity related to bacterial growth in common bile duct bile in gallstone patients. Scand. J. Gastroenterol. 23: 83-90
6 Talarico, T. L. and W. J. Dobrogosz. 1989. Chemical characterization of an antimicrobial substance produced by Lactobacillus reuteri. Antimicrob. Agents Chemother. 33: 674-679   DOI   ScienceOn
7 Tissier, H. 1906. Traitement des infections intestinales par la methodle de la flore bactertienne de intestin. Crit. Rev. Soc. Biol. 60: 359-361
8 Myhara, R. M., K. Nilsson, E. J. Bowmer, and P. K. Cruickshank. 1988. Gas production from melibiose, raffinose and white bean extracts by bacteria of human fecal origin. Can. Inst. Food Sci. Technol. J. 21: 245-251   DOI
9 Paulini, H., R. Popp, O. Schimmer, O. Ratka, and E. Roder. 1991. Isogravacridonchlorine: A potent and direct acting frameshift mutagen from the roots of Ruta graveolens. Planta Medica 57: 59-61   DOI   ScienceOn
10 Hwang, Y. H. and H. S. Lee. 2002. Antibacterial activity of Pinus densiflora leaf-derived components toward human intestinal bacteria. J. Microbiol. Biotechnol. 12: 610-616
11 Lee, H. S. 2003. Inhibitory effects of quinizarin isolated from Cassia tora seeds against human intestinal bacteria and aflatoxin $B_1$ biotransformation. J. Microbiol. Biotechnol. 13: 529-536
12 Lee, H. S. and Y. J. Ahn. 1998. Growth-inhibiting effects of Cinnamomum cassia bark-derived materials on human intestinal bacteria. J. Agric. Food Chem. 46: 8-12   DOI   ScienceOn
13 Malinckrodt Chemicals, 2002. Material Safety Data Sheet, Toxicological information MSDS N0090, Mallinckrodt Baker. Inc
14 Savage, D. C. 1977. Microbial ecology of the gastrointestinal tract. Annu. Rev. Microbiol. 31: 107-133   DOI   PUBMED   ScienceOn
15 Kim, J. D., H. Y. An, J. H. Yoon, Y. H. Park, F. Kawai, C. M. Jung, and K. H. Kang. 2002. Identification of Clostridium perfringens AB&J and its uptake of bromophenol blue. J. Microbiol. Biotechnol. 44: 544-552
16 Nieschulz, O. 1966. Pharmakol. Abstract. Chem. Fabrik Promonta G.M.B.H., Hamburg, Germany, Hanc, Oldrich, Ed. Sci. Pharm. Proc. 25th, Butterworths: London, England, 559-564. CAN 70: 18805
17 Szendrei, K., E. Minker, M. Koltai, J. Reisch, J. Novak, and G. Buzas. 1968. Quaternary alkaloids from Ruta graveolens L. Pharmazie 23: 519-520
18 Ulubelen, A. and H. Guner. 1988. Isolation of dehydromoskachan C from Ruta chalepensis var. Latifolia. J. Nat. Prod. 51: 1012-1013   DOI   ScienceOn
19 Benno, Y. 1990. Effect of diets on human fecal microflora. Bifidus 4: 1-8
20 Guandalini, S., L. Pensabene, M. A. Zikri, J. A. Dias, L. G. Casail, H. Hoekstra, S. Kolacek, K. Massar, D. MiceticTurk, A. Papadopoulou, J. S. Sousa, B. Sandhu, H. Szajewska, and Z. Weizman. 2000. Lactobacillus GG administered in oral rehydration solution to children with acute diarrhea: A multicenter European trial. J. Pediatr. Gastroenterol. Nutr. 30: 54-60   DOI   ScienceOn
21 McDonel, J. L. 1980. Clostridium perfringens toxins (Type A, B, C, D). Pharmac. Ther. 10: 617-655   DOI   PUBMED   ScienceOn
22 Mallett, A. K., I. R. Rowland, C. A. Bearne, J. C. Flynn, B. J. Fehilly, S. Udeen, and M. J. G. Farthing. 1988. Effect of dietary supplements of apple pectin, wheat bran or fat on the enzyme activity of the human faecal flora. Microbiol. Ecol. Health Dis. 1: 23-32   DOI
23 Kim, M. J., S. H. Lee, J. H. Cho, M. K. Kim, and H. S. Lee. 2003. Growth-responses of seven intestinal bacteria against Phellodendron amurense root-derived materials. J. Microbiol. Biotechnol. 13: 522-528
24 Ulubelen, A., B. Terem, E. Tuzlaci, K. F. Cheng, and Y. C. Kong. 1986. Alkaloids and coumarins from Ruta chalepensis. Phytochemistry 25: 2692-2693   DOI   ScienceOn
25 Oberhelman, R. A., R. H. Gilman, P. Sheen, D. N. Taylor, R. E. Black, L. Cabrera, A. G. Lescano, R. Meza, and G. Madico. 1999. A placebo-controlled trial of Lactobacillus GG to prevent diarrhea in undernourished Peruvian children. J. Pediatr. 134: 15-20   DOI   PUBMED   ScienceOn
26 Ghazanfar, S. A. 1994. Handbook of Arabian Medicinal Plants, pp. 190. CRC Press: Boca Raton, FL
27 Mitsuoka, T. 1990. Bifidobacteria and their role in human health. J. Indust. Microbiol. 6: 263-268   DOI
28 Black, F., K. Einarsson, A. Lidbeak, K. Orrhage, and C. E. Nord. 1991. Effect of lactic acid producing bacteria on the human intestinal microflora during ampicillin treatment. Scand. J. Infect. Dis. 23: 247-254   DOI   ScienceOn