DOI QR코드

DOI QR Code

Effects of 2'-Fucosyllactyose on Defecation and Intestinal Microbiota in Mice

2'-Fucosyllactose가 마우스 배변 및 장내 미생물에 미치는 영향

  • Han Hae Kim (Korean Medicine Application Center, Korea Institute of Oriental Medicine) ;
  • Yeon Ji Kim (Korean Medicine Application Center, Korea Institute of Oriental Medicine) ;
  • Kwang-Youn Kim (Korean Medicine Application Center, Korea Institute of Oriental Medicine) ;
  • Chul Soo Shin (Advanced Protein Technologies Corp.) ;
  • Jong-Won Yoon (Advanced Protein Technologies Corp.) ;
  • Seon-min Jeon (Advanced Protein Technologies Corp.) ;
  • Bo-Mee Kim (Advanced Protein Technologies Corp.) ;
  • Jeongsu Bang (Advanced Protein Technologies Corp.) ;
  • Kyungho Kim (Korean Medicine Application Center, Korea Institute of Oriental Medicine)
  • Received : 2023.04.11
  • Accepted : 2023.06.16
  • Published : 2023.06.30

Abstract

Prebiotics are known as components of intestinal microbiota that can improve and maintain human health status by stimulating the growth and activity of the intestinal tract as a method of controlling the intestinal environment. In this study, we examined whether 2'-fucosyllactose (FL) could affect intestinal microbial population and bowel activity. Water content and frequency of mouse feces were increased in the 2'-FL treated group at a high concentration (1,000 mg/kg), with brightness of the color enhanced and physical properties diluted. In addition, intestinal microbial analysis showed that harmful bacteria Clostridium and Staphylococcus strains were decreased and beneficial bacteria such as Lactobacillus strains were markedly increased in the group treated with a high concentration of 2'-FL compared to those in the control group. These findings suggest that administration of 2'-FL can maintain healthy bowel activity by reducing harmful bacteria population and improving diluted physical properties.

Keywords

Acknowledgement

본 논문은 2022년도 (주)에이피테크놀로지(수원, 대한민국)로부터 시험물질과 연구비(세부과제번호: ERT2111290) 지원에 의해 수행되었으며, 이에 감사드립니다.

References

  1. Andrews CN, Storr M. 2011. The pathophysiology of chronic constipation. Can J Gastroenterol 25:169319
  2. Ballard O, Morrow AL. 2013. Human milk composition: Nutrients and bioactive factors. Pediatr Clin North Am60:49-74 https://doi.org/10.1016/j.pcl.2012.10.002
  3. Bode L. 2012. Human milk oligosaccharides: Every baby needs a sugar mama. Glycobiology 22:1147-1162 https://doi.org/10.1093/glycob/cws074
  4. Bouhnik Y, Raskine L, Simoneau G, Vicaut E, Neut C, Flourie B, Brouns F, Bornet FR. 2004. The capacity of nondigestible carbohydrates to stimulate fecal bifidobacteria in healthy humans: A double-blind, randomized, placebo-controlled, parallel-group, dose-response relation study. Am J Clin Nutr 80:1658-1664 https://doi.org/10.1093/ajcn/80.6.1658
  5. Bourlioux P, Koletzko B, Guarner F, Braesco V. 2003. The intestine and its microflora are partners for the protection of the host: Report on the Danone Symposium "The Intelligent Intestine," held in Paris. Am J Clin Nutr 78:675-683 https://doi.org/10.1093/ajcn/78.4.675
  6. Deutsch L, Stres B. 2021. The importance of objective stool classification in fecal 1H-NMR metabolomics: Exponential increase in stool crosslinking is mirrored in systemic inflammation and associated to fecal acetate and methionine. Metabolites 11:172
  7. Elison E, Vigsnaes LK, Krogsgaard LR, Rasmussen J, Sorensen N, McConnell B, Hennet T, Sommer MOA, Bytzer P. 2016. Oral supplementation of healthy adults with 2'-O-fucosyllactose and lacto-N-neotetraose is well tolerated and shifts the intestinal microbiota. Br J Nutr 116:1356-1368 https://doi.org/10.1017/S0007114516003354
  8. Facinelli B, Marini E, Magi G, Zampini L, Santoro L, Catassi C, Monachesi C, Gabrielli O, Coppa GV. 2019. Breast milk oligosaccharides: Effects of 2'-fucosyllactose and 6'-sialyllactose on the adhesion of Escherichia coli and Salmonella fyris to Caco-2 cells. J Matern Fetal Neonatal Med 32:2950-2952 https://doi.org/10.1080/14767058.2018.1450864
  9. Farhin S, Wong A, Delungahawatta T, Amin JY, Bienenstock J, Buck R, Kunze WA. 2019. Restraint stress induced gut dysmotility is diminished by a milk oligosaccharide (2'-fucosyllactose) in vitro. PLOS ONE 14:e0215151
  10. Fiordaliso M, Kok N, Desager JP, Goethals F, Deboyser D, Roberfroid M, Delzenne N. 1995. Dietary oligofructose lowers triglycerides, phospholipids and cholesterol in serum and very low density lipoproteins of rats. Lipids 30:163-167 https://doi.org/10.1007/BF02538270
  11. German JB, Freeman SL, Lebrilla CB, Mills, DA. 2008. Human milk oligosaccharides: evolution, structures and bioselectivity as substrates for intestinal bacteria. Nestle Nutr Workshop Ser Pediatr Program 62:205-222 https://doi.org/10.1159/000146322
  12. Gevers D, Knight R, Petrosino JF, Huang K, McGuire AL, Birren BW, Nelson KE, White O, Methe BA, Huttenhower C. 2012. The human microbiome project: A community resource for the healthy human microbiome. PLOS Biol 10:e1001377
  13. Gibson GR, Wang X. 1994. Regulatory effects of bifidobacteria on the growth of other colonic bacteria. J Appl Bacteriol 77:412-420 https://doi.org/10.1111/j.1365-2672.1994.tb03443.x
  14. Gibson GR. 1999. Dietary modulation of the human gut microflora using the prebiotics oligofructose and inulin. J Nutr 129:1438S-1441S https://doi.org/10.1093/jn/129.7.1438S
  15. Good M, Sodhi CP, Yamaguchi Y, Jia H, Lu P, Fulton WB, Martin LY, Prindle T Jr, Nino DF, Zhou Q, Ma C, Ozolek JA, Buck RH, Goehring KC, Hackam DJ. 2016. The human milk oligosaccharide 2'-fucosyllactose attenuates the severity of experimental necrotising enterocolitis by enhancing mesenteric perfusion in the neonatal intestine. Br J Nutr116:1175-1187
  16. Han NS, Kim TJ, Park YC, Kim J, Seo JH. 2012. Biotechnological production of human milk oligosaccharides. Biotechnol Adv 30:1268-1278 https://doi.org/10.1016/j.biotechadv.2011.11.003
  17. Kim BS. 2023. Human Stool image analysis based on deep learning for smart home healthcare system. Ph.D. Thesis, Pukyoung National Univ. Busan. Korea
  18. Kleessen B, Stoof G, Proll J, Schmiedl D, Noack J, Blaut M. 1997. Feeding resistant starch affects fecal and cecal microflora and short-chain fatty acids in rats. J Anim Sci 75:2453-2462 https://doi.org/10.2527/1997.7592453x
  19. Kulinich A, Liu L. 2016. Human milk oligosaccharides: The role in the fine-tuning of innate immune responses. Carbohydr Res 432:62-70 https://doi.org/10.1016/j.carres.2016.07.009
  20. Kwon Y, Lee S. 2002. Effects of Bifidobacteriaand oligosaccharides on the quality attributes of frozen soy yogurts. Korean J Soc Food Cookery Sci 18:43-50
  21. Lee G, Park SS, Lee WC. 1996. A study on the Han, fecal, and urine in Sasang constitutional medicine. Korean J Orient Int Med 17:123-138
  22. Lewis ZT, Totten SM, Smilowitz JT, Popovic M, Parker E, Lemay DG, Van Tassell ML, Miller MJ, Jin YS, German JB, Lebrilla CB, Mills DA. 2015. Maternal fucosyltransferase2 status affects the gut bifidobacterial communities of breastfed infants. Microbiome 3:13
  23. Maloy KJ, Powrie F. 2011. Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature 474: 298-306 https://doi.org/10.1038/nature10208
  24. Mao B, He Z, Chen Y, Stanton C, Ross RP, Zhao J, Chen W, Yang B. 2022. Effects of Bifidobacterium with the ability of 2'-fucosyllactose utilization on intestinal microecology of mice. Nutrients 14:5392
  25. Marriage BJ, Buck RH, Goehring KC, Oliver JS, Williams JA. 2015. Infants fed a lower calorie formula with 2'FL show growth and 2'FL uptake like breast-fed infants. J Pediatr Gastroenterol Nutr 61:649-658 https://doi.org/10.1097/MPG.0000000000000889
  26. Martinez-Ferez A, Rudloff S, Guadix A, Henkel CA, Pohlentz G, Boza JJ, Guadix EM, Kunz C. 2006. Goats' milk as a natural source of lactose-derived oligosaccharides: Isolation by membrane technology. Int Dairy J 16:173-181 https://doi.org/10.1016/j.idairyj.2005.02.003
  27. Matsuda K, Akiyama T, Tsujibe S, Oki K, Gawad A, Fujimoto J. 2021. Direct measurement of stool consistency by texture analyzer and calculation of reference value in Belgian general population. Sci Rep 11:2400
  28. Matsuki T, Yahagi K, Mori H, Matsumoto H, Hara T, Tajima S, Ogawa E, Kodama H, Yamamoto K, Yamada T, Matsumoto S, Kurokawa K. 2016. A key genetic factor for fucosyllactose utilization affects infant gut microbiota development. Nat Commun 7:11939
  29. Ministry of Food and Drug Safety. 2020. Functional evaluation guideline of health functional food. Available from https://www.mfds.go.kr/brd/m_1060/view.do?seq=14660&srchFr=&srchTo=&srchWord=%EC%9E%A5+%EA%B1%B4%EA%B0%95&srchTp=0&itm_seq_1=0&itm_seq_2=0&multi_itm_seq=0&company_cd=&company_nm=&Data_stts_gubun=C9999&page=1 [cited 22 June 2023]
  30. Morrow AL, Ruiz-Palacios GM, Altaye M, Jiang X, Guerrero ML, Meinzen-Derr JK, Farkas T, Chaturvedi P, Pickering LK, Newburg DS. 2004. Human milk oligosaccharide blood group epitopes and innate immune protection against Campylobacter and calicivirus diarrhea in breastfed infants. In Pickering LK, Morrow AL, Ruiz-Palacios GM, Schanler RJ (Eds.), Protecting Infants through Human Milk. Advancing the Scientific Evidence, Vol. 554. pp.443-446. Springer
  31. Na MH, Kim WK. 2007. Effects of xylooligosaccharide intake on fecal Bifidobacteria, lactic acid and lipid metabolism in Korean young women. J Nutr Health 40:154-161
  32. Newburg DS, Ruiz-Palacios GM, Altaye M, Chaturvedi P, Lourdes Guerrero M, Meinzen-Derr JK, Morrow AL. 2004. Human milk α1,2-linked fucosylated oligosaccharides decrease risk of diarrhea due to stable toxin of E. coli in breastfed infants. In Pickering LK, Morrow AL, Ruiz-Palacios GM, Schanler RJ (Eds.), Protecting Infants through Human Milk. Advancing the Scientific Evidence, Vol. 554. pp.457-461. Springer
  33. Ninonuevo M, An H, Yin H, Killeen K, Grimm R, Ward R, German B, Lebrilla C. 2005. Nanoliquid chromatography-mass spectrometry of oligosaccharides employing graphitized carbon chromatography on microchip with a high-accuracy mass analyzer. Electrophoresis 26:3641-3649 https://doi.org/10.1002/elps.200500246
  34. Ogata T, Nakamura T, Anjitsu K, Yaeshima T, Takahashi S, Fukuwatari Y, Ishibashi N, Hayasawa H, Fujisawa T, Iino H. 1997. Effect of Bifidobacterium longumBB536 administration on the intestinal environment, defecation frequency and fecal characteristics of human volunteers. Biosci Microflora 16:53-58 https://doi.org/10.12938/bifidus1996.16.53
  35. Ramirez-Farias C, Baggs GE, Marriage BJ. 2021. Growth, tolerance, and compliance of infants fed an extensively hydrolyzed infant formula with added 2'-FL fucosyllactose (2'-FL) human milk oligosaccharide. Nutrients 13:186
  36. Rho JH, Kim MH. 2011. Foods, digesting and absorbing. Bull Food Technol 24:498-524
  37. Robinson RR, Feirtag J, Slavin JL. 2001. Effects of dietary arabinogalactan on gastrointestinal and blood parameters in healthy human subjects. J Am Coll Nutr 20:279-285 https://doi.org/10.1080/07315724.2001.10719048
  38. Ruiz-Palacios GM, Cervantes LE, Ramos P, Chavez-Munguia B, Newburg DS. 2003. Campylobacter jejuni binds intestinal H(O) antigen (Fucα1, 2Galβ1, 4GlcNAc), and fucosyloligosaccharides of human milk inhibit its binding and infection. J Biol Chem 278:14112-14120 https://doi.org/10.1074/jbc.M207744200
  39. Sharma A, Rao S. 2017. Constipation: Pathophysiology and current therapeutic approaches. In Greenwood-Van Meerveld B (Ed.), Gastrointestinal Pharmacology. Handbook of Experimental Pharmacology, Vol. 239. pp.59-74. Springer
  40. Smith-Brown P, Morrison M, Krause L, Davies PSW. 2016. Mothers secretor status affects development of childrens microbiota composition and function: A pilot study. PLOS ONE 11:e0161211
  41. Soyyilmaz B, Miks MH, Rohrig CH, Matwiejuk M, Meszaros-Matwiejuk A, Vigsnaes LK. 2021. The mean of milk: A review of human milk oligosaccharide concentrationsthroughout lactation. Nutrients 13:2737
  42. Tateyama I, Hashii K, Johno I, Iino T, Hirai K, Suwa Y, Kiso Y. 2005. Effect of xylooligosaccharide intake on severe constipation in pregnant women. J Nutr Sci Vitaminol 51:445-448 https://doi.org/10.3177/jnsv.51.445
  43. Thongaram T, Hoeflinger JL, Chow J, Miller MJ. 2017. Human milk oligosaccharide consumption by probiotic and human-associated bifidobacteria and lactobacilli. J Dairy Sci 100:7825-7833 https://doi.org/10.3168/jds.2017-12753
  44. Vazquez E, Barranco A, Ramirez M, Gruart A, Delgado-Garcia JM, Martinez-Lara E, Blanco S, Martin MJ, Castanys E, Buck R, Prieto P, Rueda R. 2015. Effects of a human milk oligosaccharide, 2'-fucosyllactose, on hippocampal long-term potentiation and learning capabilities in rodents. J Nutr Biochem 26:455-465 https://doi.org/10.1016/j.jnutbio.2014.11.016
  45. Vivatvakin B, Mahayosnond A, Theamboonlers A, Steenhout PG, Conus N. 2010. Effect of a whey-predominant starter formula containing LCPUFAs and oligosaccharides (FOS/GOS) on gastrointestinal comfort in infants. Asia Pac J Clin Nutr 19:473-480
  46. Wang L, Hu L, Yan S, Jiang T, Fang S, Wang G, Zhao J, Zhang H, Chen W. 2017. Effects of different oligosaccharides at various dosages on the composition of gut microbiota and short-chain fatty acids in mice with constipation. Food Funct 8:1966-1978 https://doi.org/10.1039/C7FO00031F
  47. Wheeler RR, Katzmann RA. 2006. A primer on interbranch relations. Geo L J 95:1155
  48. Yu ZT, Nanda Nanthakumar N, Newburg DS. 2016. The human milk oligosaccharide 2'-fucosyllactose quenches Campylobacter jejuni-induced inflammation in human epithelial cells HEp-2 and HT-29 and in mouse intestinal mucosa. J Nutr146:1980-1990
  49. Zehra S, Khambati I, Vierhout M, Firoz Mian M, Buck R, Forsythe P. 2018. Human milk oligosaccharides attenuate antigen-antibody complex induced chemokine release from human intestinal epithelial cell lines. J Food Sci 83:499-508 https://doi.org/10.1111/1750-3841.14039
  50. Zuckerman GR, Trellis DR, Sherman TM, Clouse RE. 1995. An objective measure of stool color for differentiating upper from lower gastrointestinal bleeding. Dig Dis Sci 40:1614-1621 https://doi.org/10.1007/BF02212679