• Title/Summary/Keyword: human glioma

Search Result 95, Processing Time 0.025 seconds

The Relationship between Intracellular Protein Kinase C Concentration and Invasiveness in U-87 Malignant Glioma Cells (교모세포종 세포주 U-87에서 세포내 PKC 농도와 종양침습성과의 상관 관계)

  • Ji, Cheol;Cho, Kyung-Keun;Lee, Kyung Jin;Park, Sung Chan;Cho, Jung Ki;Kang, Joon Ki;Choi, Chang Rak
    • Journal of Korean Neurosurgical Society
    • /
    • v.30 no.3
    • /
    • pp.263-271
    • /
    • 2001
  • Objective : Glioblastomas, the most common type of primary brain tumors, are highly invasive and cause massive tissue destruction at both the tumor invading edges and in areas that are not in direct contact with glioma cells. As a result, patients with high-grade gliomas are faced with a poor prognosis. Such grim statistics emphasize the need to better understand the mechanisms that underlie glioma invasion, as these may lead to the identification of novel targets in the therapy of high grade gliomas. Protein kinase C(PKC) is a family of serine/threonine kinases and an important signal transduction enzyme that conveys signals generated by ligand-receptor interaction at the cell surface to the nucleus. PKC appears to be critical in regulating many aspects of glioma biology. The purpose of this study was to assess accurately the role of PKC in the invasion regulation of human gliomas based on hypothesis that protein kinase C(PKC) is functional in the process of glial tumor cell invasion. Method : To test this hypothesis, U-87 malignant glioma cell line intracellular PKC levels were up and down regulated and their invasiveness was tested. Intracellular PKC level was characterized using PKC activity assays. Invasion assays including barrier migration and spheroid confrontation were used to study the relationship between PKC concentration and invasiveness. Result : The cell line which were treated by PKC inhibitor tamoxifen and hypericin exhibited decreased PKC activity and decreased invasive abilities dose dependently both in matrigel invasion assay and tumor spheroid fetal rat brain aggregates(FRBA) confrontation assay. However, the cell line that was treated by PKC activator 12-O-tetradecanylphorbol-13acetate(TPA) did not exhibit increases in either PKC activity or invasive ability. Conclusion : These studies suggest that PKC may be a useful molecular target for the chemotherapy of glioblastoma and other malignancies and that a therapeutic approach based on the ability of PKC inhibitors may be helpful in preventing invasion.

  • PDF

Gene Therapy for Mice Sarcoma with Oncolytic Herpes Simplex Virus-1 Lacking the Apoptosis-inhibiting Gene, icp34.5

  • Lan, Ping;Dong, Changyuan;Qi, Yipeng;Xiao, Gengfu;Xue, Feng
    • BMB Reports
    • /
    • v.36 no.4
    • /
    • pp.379-386
    • /
    • 2003
  • A mutant herpes simplex virus 1, mtHSV, was constructed by inserting the E. coli beta-galactosidase gene into the loci of icp34.5, the apoptosis-inhibiting gene of HSV. The mtHSV replicated in and lysed U251 (human glioma cells), EJ (human bladder cells), and S-180 (mice sarcoma cells), but not Wish (human amnion cells) cells. With its intact tk (thymidine kinase) gene, mtHSV exhibited susceptibility to acyclovir (ACV), which provided an approach to control viral replication. An in vivo test with mtHSV was conducted in immune-competent mice bearing sarcoma S-180 tumors, which were treated with a single intratumoral injection of mtHSV or PBS. Tumor dimensions then were measured at serial time points, and the tumor volumes were calculated. Sarcoma growth was significantly inhibited with prolonged time and reduced tumor volume. There was microscopic evidence of necrosis of tumors in treated mice, whereas no damage was found in other organs. Immunohistochemical staining revealed that virus replication was exclusively confined to the treated tumor cells. HSV-1 DNA was detected in tumors, but not in the other organs by a polymerase chain reaction analysis. From these experiments, we concluded that mtHSV should be a safe and promising oncolytic agent for cancer treatment.

The Dose Dependent Effects of Ruxolitinib on the Invasion and Tumorigenesis in Gliomas Cells via Inhibition of Interferon Gamma-Depended JAK/STAT Signaling Pathway

  • Delen, Emre;Doganlar, Oguzhan
    • Journal of Korean Neurosurgical Society
    • /
    • v.63 no.4
    • /
    • pp.444-454
    • /
    • 2020
  • Objective : Glioblastoma multiforme (GBM) is the most aggressive for of brain tumor and treatment often fails due to the invasion of tumor cells into neighboring healthy brain tissues. Activation of the Janus kinase-signal transducer and activator of transcription (JAK/STAT) signaling pathway is essential for normal cellular function including angiogenesis, and has been proposed to have a pivotal role in glioma invasion. This study aimed to determine the dose-dependent effects of ruxolitinib, an inhibitor of JAK, on the interferon (IFN)-I/IFN-α/IFN-β receptor/STAT and IFN-γ/IFN-γ receptor/STAT1 axes of the IFN-receptor-dependent JAK/STAT signaling pathway in glioblastoma invasion and tumorigenesis in U87 glioblastoma tumor spheroids. Methods : We administered three different doses of ruxolitinib (50, 100, and 200 nM) to human U87 glioblastoma spheroids and analyzed the gene expression profiles of IFNs receptors from the JAK/STAT pathway. To evaluate activation of this pathway, we quantified the phosphorylation of JAK and STAT proteins using Western blotting. Results : Quantitative real-time polymerase chain reaction analysis demonstrated that ruxolitinib led to upregulated of the IFN-α and IFN-γ while no change on the hypoxia-inducible factor-1α and vascular endothelial growth factor expression levels. Additionally, we showed that ruxolitinib inhibited phosphorylation of JAK/STAT proteins. The inhibition of IFNs dependent JAK/STAT signaling by ruxolitinib leads to decreases of the U87 cells invasiveness and tumorigenesis. We demonstrate that ruxolitinib may inhibit glioma invasion and tumorigenesis through inhibition of the IFN-induced JAK/STAT signaling pathway. Conclusion : Collectively, our results revealed that ruxolitinib may have therapeutic potential in glioblastomas, possibly by JAK/STAT signaling triggered by IFN-α and IFN-γ.

CXCR4-STAT3 Axis Plays a Role in Tumor Cell Infiltration in an Orthotopic Mouse Glioblastoma Model

  • Han, Ji-hun;Yoon, Jeong Seon;Chang, Da-Young;Cho, Kyung Gi;Lim, Jaejoon;Kim, Sung-Soo;Suh-Kim, Haeyoung
    • Molecules and Cells
    • /
    • v.43 no.6
    • /
    • pp.539-550
    • /
    • 2020
  • Glioblastoma multiforme (GBM) is a fatal malignant tumor that is characterized by diffusive growth of tumor cells into the surrounding brain parenchyma. However, the diffusive nature of GBM and its relationship with the tumor microenvironment (TME) is still unknown. Here, we investigated the interactions of GBM with the surrounding microenvironment in orthotopic xenograft animal models using two human glioma cell lines, U87 and LN229. The GBM cells in our model showed different features on the aspects of cell growth rate during their development, dispersive nature of glioma tumor cells along blood vessels, and invasion into the brain parenchyma. Our results indicated that these differences in the two models are in part due to differences in the expression of CXCR4 and STAT3, both of which play an important role in tumor progression. In addition, the GBM shows considerable accumulation of resident microglia and peripheral macrophages, but polarizes differently into tumor-supporting cells. These results suggest that the intrinsic factors of GBM and their interaction with the TME determine the diffusive nature and probably the responsiveness to non-cancer cells in the TME.

Differential Expression of the Tight Junction Protein, Occludin, in Brain Tumors

  • Kim, Choong-Hyun;Cheong, Jin-Hwan;Bak, Koang-Hum;Kim, Jae-Min;Ko, Yong;Oh, Suck-Jun
    • Journal of Korean Neurosurgical Society
    • /
    • v.38 no.1
    • /
    • pp.12-15
    • /
    • 2005
  • Objective : Cerebral edema develops in the brain tumors by loosening of the endothelial tight junction. Tight junction[TJ] proteins, such as occludin and claudin bind adjacent cells tightly. Authors examine the expression rate of occludin in human brain tumors to evaluate the effect of altered expression of occludin on cerebral edema. Methods : Seventy surgical specimens stored at $-70^{\circ}C$ were used. It included 14 astrocytic tumors, 27 meningiomas, 12 scwannomas, 7 pituitary adenomas, 6 hemangioblastomas. and 4 craniopharyngiomas. After protein extraction, expression of occludin was investigated by Western blot analysis. The tumors were classified according to World Health Organization[WHO] classification. Results : The expression rates of occludin in brain tumors were : glioma [8/14=57.1%]. meningioma [16/27=59.3%], schwannoma [10/12=83.3%], pituitary adenoma [6/7=85.7%], hemangioblastoma [6/6=100%], and craniopharyngioma [3/4=75.0%]. The expression rate in glioma and meningioma was lower than other brain tumors. In gliomas, high grade tumor [1/4=25.0%] exhibited lower expression rate of occludin than low grade one [7/10=70.0%]. Conclusion : These results suggest that the expression of occludin is different among the various kinds of brain tumors. In gliomas, its expression is correlated with the histological grade. It may indicate that occludin plays a role in the development of edema in the brain tumors.

The origin-of-cell harboring cancer-driving mutations in human glioblastoma

  • Lee, Joo Ho;Lee, Jeong Ho
    • BMB Reports
    • /
    • v.51 no.10
    • /
    • pp.481-483
    • /
    • 2018
  • Glioblastoma (GBM) is the most common and aggressive form of human adult brain malignancy. The identification of the cell of origin harboring cancer-driver mutations is the fundamental issue for understanding the nature of GBM and developing the effective therapeutic target. It has been a long-term hypothesis that neural stem cells in the subventricular zone (SVZ) might be the origin-of-cells in human glioblastoma since they are known to have life-long proliferative activity and acquire somatic mutations. However, the cell of origin for GBM remains controversial due to lack of direct evidence thereof in human GBM. Our recent study using various sequencing techniques in triple matched samples such as tumor-free SVZ, tumor, and normal tissues from human patients identified the clonal relationship of driver mutations between GBM and tumor-free SVZ harboring neural stem cells (NSCs). Tumor-free SVZ tissue away from the tumor contained low-level GBM driver mutations (as low as 1% allelic frequency) that were found in the dominant clones in its matching tumors. Moreover, via single-cell sequencing and microdissection, it was discovered that astrocyte-like NSCs accumulating driver mutations evolved into GBM with clonal expansion. Furthermore, mutagenesis of cancer-driving genes of NSCs in mice leads to migration of mutant cells from SVZ to distant brain and development of high-grade glioma through the aberrant growth of oligodendrocyte precursor lineage. Altogether, the present study provides the first direct evidence that NSCs in human SVZ is the cell of origin that develops the driver mutations of GBM.

Multi-Class Classification Framework for Brain Tumor MR Image Classification by Using Deep CNN with Grid-Search Hyper Parameter Optimization Algorithm

  • Mukkapati, Naveen;Anbarasi, MS
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.101-110
    • /
    • 2022
  • Histopathological analysis of biopsy specimens is still used for diagnosis and classifying the brain tumors today. The available procedures are intrusive, time consuming, and inclined to human error. To overcome these disadvantages, need of implementing a fully automated deep learning-based model to classify brain tumor into multiple classes. The proposed CNN model with an accuracy of 92.98 % for categorizing tumors into five classes such as normal tumor, glioma tumor, meningioma tumor, pituitary tumor, and metastatic tumor. Using the grid search optimization approach, all of the critical hyper parameters of suggested CNN framework were instantly assigned. Alex Net, Inception v3, Res Net -50, VGG -16, and Google - Net are all examples of cutting-edge CNN models that are compared to the suggested CNN model. Using huge, publicly available clinical datasets, satisfactory classification results were produced. Physicians and radiologists can use the suggested CNN model to confirm their first screening for brain tumor Multi-classification.

A Combination of PG490 and Lipopolysaccharide Induce Apoptosis through Activation of Casapase-3 and Downregulation of cIAP1 and XIAP in Human Astroglioma Cell

  • Lee, Tae-Jin;Woo, Kyung-Jin;Park, Jong-Wook;Kwon, Taeg-Kyu
    • IMMUNE NETWORK
    • /
    • v.5 no.2
    • /
    • pp.99-104
    • /
    • 2005
  • Background: Malignant gliomas are the most common primary tumors in the central nervous system. Methods: We investigated the combined effect of PG490 and LPS on the induction of the apoptotic pathway in human astroglioma cells. Results: Treatment of U87 cells with combination of 50nM of PG490 and $50{\mu}g/ml$ of LPS resulted in increased internucleosomal DNA fragmentation, cleavage of PLC-${\gamma}1$, and downregulation of cIAP1 and XIAP. The combination of LPS and PG490 treatment-induced apoptosis is mediated through the activation of caspase, which is inhibited by the caspase inhibitor, z-VAD-fmk. Also, release of cytochrome c was found in PG490 and LPS-cotreated U87 cell. Conclusion: Taken together, combination of PG490 and LPS appears to be a potent inducer of apoptosis in astrogliaoma cells, and might have some benefit in the treatment of glioma patients.

The Effects of Bee Venom for Aqua-acupuncture on Cell viability (봉약침액(蜂藥鍼液)이 세포활성(細胞活性)에 미치는 영향(影響))

  • Lee, Seung-hoon;Lee, Bong-hyo;Lee, Kyung-min;Cho, Hyun-yeul;Kim, Youn-wook;Bang, Jae-sun;Seo, Jung-chul;Han, Sang-won
    • Journal of Acupuncture Research
    • /
    • v.19 no.5
    • /
    • pp.57-72
    • /
    • 2002
  • Objectives : This study was undertaken to determine the cytotoxic effects of crude bee venom which is widely used for aqua-acupuncture in oriental medical clinic. Methods : We compared the effects of crude bee venom, apamin, melittin and MCD peptide on cellviability by MTT asssay. Results : The obtained results are summarized as follows: 1. Bee venom, apamin, melittin and MCD peptide showed concentration--dependent cytotoxic effect in some human cell lines(human glioma cell line과 neuroblastorna, human mast cell line) for 24 and 48 Hour treatment. 2. Bee venom, apamin, melittin and MCD peptide showed dose-dependent cytotoxic effect in some human cell lines for 24 and 48 Hour treatment. 3. Bee venom treatment for 24 and 48 hour showed higher cytotoxic effects than apamin, melittin and MCD peptide. Conclusions : These results suggest that bee venom, apamin, melittin and MCD peptide have concentration- and dose- dependent cytotoxic effect in some human cell lines. But further study is needed for optimal concentration and dose.

  • PDF

AntagomiR-27a Targets FOXO3a in Glioblastoma and Suppresses U87 Cell Growth in Vitro and in Vivo

  • Ge, Yun-Fei;Sun, Jun;Jin, Chun-Jie;Cao, Bo-Qiang;Jiang, Zhi-Feng;Shao, Jun-Fei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.2
    • /
    • pp.963-968
    • /
    • 2013
  • Objective: To study the effect of the antagomiR-27a inhibitor on glioblastoma cells. Methods: The miR-27a expression level in specimens of human glioblastoma and normal human brain tissues excised during decompression for traumatic brain injury was assessed using qRT-PCR; The predicted target gene of miR-27a was screened out through bioinformatics databases, and the predicted gene was verified using genetic report assays; the effect of antagomiR-27a on the invasion and proliferation of glioma cells was analyzed using MTT assays and 5-ethynyl-2'-deoxyuridine (EdU) labeling. A xenograft glioblastoma model in BALB-c nude mice was established to detect the effect of antagomiR-27a on tumour growth. Results: qRT-PCR results showed that miR-27a significantly increased in specimens from glioblastoma comparing with normal human brain tissues. Th miR-27a inhibitor significantly suppressed invasion and proliferation of glioblastoma cells. FOXO3a was verified as a new target of miR-27a by Western blotting and reporter analyzes. Tumor growth in vivo was suppressed by administration of the miR-27a inhibitor. Conclusion: MiR-27a may be up-regulated in human glioblastoma, and antagomiR-27a could inhibit the proliferation and invasion ability of glioblastoma cells.