• Title/Summary/Keyword: human development & family domain

Search Result 28, Processing Time 0.024 seconds

Characterization of a Myostatin-like Gene from the Scallop Patinopecten yessoensis

  • Kim, Hyun-Woo;Kim, Hak-Jun;Yoo, Myong-Suk
    • Fisheries and Aquatic Sciences
    • /
    • v.10 no.1
    • /
    • pp.16-23
    • /
    • 2007
  • Myostatin (GDF8) is a growth factor that limits muscle tissue growth and development in vertebrates. We isolated a myostatin-like gene (Py-MSTN) from the marine invertebrate, the scallop Patinopecten yessoensis. Py-MSTN was highly expressed in the adductor muscle and in the gill unexpectedly. Amino acid analysis showed that Py-MSTN has 49% amino acid sequence identity and 64% similarity to human myostatin (Hs-MSTN), and 42% identity and 61% similarity to myoglianin, the only invertebrate homolog. These results indicated that Py-MSTN may be functionally similar to the vertebrate MSTN than the invertebrate homolog. Phylogenetic analysis suggested that Py-MSTN is an ancestral form of vertebrate MSTN and GDF11 and does not belong to other $TGF-{\beta}$ family members. Molecular modeling showed that Py-MSTN exhibits a similar tertiary structure to mammalian BMP7, a member of $TGF-{\beta}$ family. In addition, the amino acid residues which contact extracellular domain of the receptor were relavively conserved. Given these results, we propose that Py-MSTN is a functionally active member of the $TGF-{\beta}$ family and is involved In muscle growth and regulation.

Common Docking Domain Mutation E322K of the ERK2 Gene is Infrequent in Oral Squamous Cell Carcinomas

  • Valiathan, Gopalakrishnan Mohan;Thenumgal, Siji Jacob;Jayaraman, Bhaskar;Palaniyandi, Arunmozhi;Ramkumar, Hemalatha;Jayakumar, Keerthivasan;Bhaskaran, Sajeev;Ramanathan, Arvind
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6155-6157
    • /
    • 2012
  • Background: Mutations in the MAPK (Mitogen Activated Protein Kinase) signaling pathway - EGFR/Ras/RAF/MEK have been associated with the development of several carcinomas. ERK2, a downstream target of the MAPK pathway and a founding member of the MAPK family is activated by cellular signals emanating at the cell membrane. Activated ERK2 translocates into the nucleus to transactivate genes that promote cell proliferation. MKP - a dual specific phosphatase - interacts with activated ERK2 via the common docking (CD) domain of the later to inactivate (dephosphorylate) and effectively terminate further cell proliferation. A constitutively active form of ERK2 carrying a single point mutation - E322K in its CD domain, was earlier reported by our laboratory. In the present study, we investigated the prevalence of this CD domain E322K mutation in 88 well differentiated OSCC tissue samples. Materials and Method: Genomic DNA specimens isolated from 88 oral squamous cell carcinoma tissue samples were amplified with primers flanking the CD domain of the ERK2 gene. Subsequently, PCR amplicons were gel purified and subjected to direct sequencing to screen for mutations. Results: Direct sequencing of eighty eight OSCC samples identified an E322K CD domain mutation in only one (1.1%) OSCC sample. Conclusions: Our result indicates that mutation in the CD domain of ERK2 is rare in OSCC patients, which suggests the role of genetic alterations in other mitogenic genes in the development of carcinoma in the rest of the patients. Nevertheless, the finding is clinically significant, as the relatively rare prevalence of the E322K mutation in OSCC suggests that ERK2, being a common end point signal in the multi-hierarchical mitogen activated signaling pathway may be explored as a viable drug target in the treatment of OSCC.

$PKC{\eta}$ Regulates the $TGF{\beta}3$-induced Chondrogenic Differentiation of Human Mesenchymal Stem Cell

  • Ku, Bo Mi;Yune, Young Phil;Lee, Eun Shin;Hah, Young-Sool;Park, Jae Yong;Jeong, Joo Yeon;Lee, Dong Hoon;Cho, Gyeong Jae;Choi, Wan Sung;Kang, Sang Soo
    • Development and Reproduction
    • /
    • v.17 no.4
    • /
    • pp.299-309
    • /
    • 2013
  • Transforming growth factor (TGF) family is well known to induce the chondrogenic differentiation of mesenchymal stem cells (MSC). However, the precise signal transduction pathways and underlying factors are not well known. Thus the present study aims to evaluate the possible role of C2 domain in the chondrogenic differentiation of human mesenchymal stem cells. To this end, 145 C2 domains in the adenovirus were individually transfected to hMSC, and morphological changes were examined. Among 145 C2 domains, C2 domain of protein kinase C eta ($PKC{\eta}$) was selected as a possible chondrogenic differentiation factor for hMSC. To confirm this possibility, we treated $TGF{\beta}3$, a well known chondrogenic differentiation factor of hMSC, and examined the increased-expression of glycosaminoglycan (GAG), collagen type II (COL II) as well as $PKC{\eta}$ using PT-PCR, immunocytochemistry and Western blot analysis. To further evaluation of C2 domain of $PKC{\eta}$, we examined morphological changes, expressions of GAG and COL II after transfection of $PKC{\eta}$-C2 domain in hMSC. Overexpression of $PKC{\eta}$-C2 domain induced morphological change and increased GAG and COL II expressions. The present results demonstrate that $PKC{\eta}$ involves in the TGF-${\beta}3$-induced chondrogenic differentiation of hMSC, and C2 domain of $PKC{\eta}$ has important role in this process.

Study on Vitalization Strategy for 'Management of Technology Family Membership System': Case Study of Pukyong National University (기술경영가족회사제도의 활성화 방안 연구 : 부경대학교 기술경영전문대학원 사례)

  • Kim, Sook-Ja;Kim, Moo-Hyun;Bark, Pyeng-Mu;Shin, Seung-Jun;Byeon, Ju-Mi
    • Proceedings of the Korea Technology Innovation Society Conference
    • /
    • 2017.08a
    • /
    • pp.101-122
    • /
    • 2017
  • As business paradigm shifts toward the convergence of technology and industry, so-called the fourth industrial revolution, research and development on enterprises is becoming the core capability of growth momentum for the future. Accordingly, Management of Technology (MOT) is being paid attention to construct systematical planning and operations on technological strategy, thereby increasing the importance of cooperative relationship in MOT-relevant domains. Due to this reason, academia manages the family membership system that enables mutual collaborations between academia and industry to achieve their win-win strategy and makes customized cooperative systems to share their human and property resources systematically. Particularly, it is vital to operate the family membership system effectively and efficiently in the MOT domain because family enterprises need to endeavor the establishment of value-toward technology strategy within the framework of those cooperative systems. For such the purpose, this paper presents the analysis of the state-of-the art of the family membership system managed by Graduate School of Management of Technology at Pukyong National University. This paper also proposes vitalization strategies of this membership system so that famliy enterprises located in the east-southern area in Republic of Korea can gain MOT-oriented innovative capability.

  • PDF

Development of a Sublimation Program for Korean Adolescents′ Aggression (한국 청소년의 공격성 순화 프로그램 개발)

  • 김현실
    • Journal of Korean Academy of Nursing
    • /
    • v.34 no.1
    • /
    • pp.81-92
    • /
    • 2004
  • Purpose: The purpose of this study was to identify a path diagram for the influence of family, personality, sexual abuse, drug abuse, coping strategies, and aggressive impulsiveness on aggression, and to develop a sublimation program for Korean adolescent's aggression. Method: Data was collected by self-report questionnaires. Subjects consisted of 2,111 adolescents. A proportional stratified random sampling method was used. The major instrument was the Mental Health Questionnaire for Korean Adolescents, and the Cronbach's Alpha ranged from .54 to .95 for each subscale. Statistical methods were Chi-square, correlation analysis, and path analysis. Results: The strongest contributing variables on aggression were person-related aggressive impulsiveness, antisocial personality, self-injured aggressive impulsiveness, gender, sexual abuse, psychosomatic symptoms II, drug abuse, age, parent-child relationship, alcohol abuse and cognitive avoidance coping strategies in the order named. Also the author developed a multi-systemic sublimation program for Korean adolescents's aggression. The multi-systemic sublimation program involves four domains including adolescents, parents, peers and community, and has several therapeutic sub-programs for each domain. Conclusion: The ecology of human development is composed of multiple, integrated levels of organization, including biological, individual-psychological, social-interpersonal, cultural, and historical levels. Therefore, this multi-systemic sublimation program will prevent and decrease the rate of aggressive behavior among Korean adolescents.

A Myostain-like Gene Expressed Highly in the Muscle Tissue of Chinese mitten crab, Eriocheir sinensis

  • Kim, Kyoung-Sun;Jeon, Jeong-Min;Kim, Hyun-Woo
    • Fisheries and Aquatic Sciences
    • /
    • v.12 no.3
    • /
    • pp.185-193
    • /
    • 2009
  • A complete cDNA, which encodes for a myostatin-like protein (Es-MSTN), was isolated from the Chinese mitten crab, Eriocheir sinensis. Es-MSTN was composed of 2,397 nucleotides and the open reading frame (ORF) specified a protein containing 468 amino acids. Es-MSTN exhibited 32% amino acid sequence identity and 52% similarity to human myostatin. Multiple sequence alignment analysis indicated that Es-MSTN possessed the conserved proteolytic cleavage site (RXXR) for maturation of the protein and nine cysteine residues for disulfide bridges. Besides the conserved structural features, Es-MSTN also exhibits its unique characters; a longer N-terminal domain which is involved in protein folding and latent form of myostatin and absence of the cleavage site for BMP-1/tolloid family of metalloproteinase to activate mature myostatin. Phylogenetic analysis suggests that Es-MSTN showed the closely related to both vertebrate myostatin and GDF11. Es-MSTN is expressed highly in the claw muscle, leg muscle, thoracic muscle and heart, and moderately in the hindgut suggesting that Es-MSTN may play important roles in the muscle tissues. As homolog of mammalian myostatin and GDF11, Es-MSTN may be involved in development of muscular tissue and further study will help to produce high-quality seafood.

SH2D4A regulates cell proliferation via the ERα/PLC-γ/PKC pathway

  • Li, Tingting;Li, Wei;Lu, Jingyu;Liu, Hong;Li, Yinghui;Zhao, Yanyan
    • BMB Reports
    • /
    • v.42 no.8
    • /
    • pp.516-522
    • /
    • 2009
  • SH2D4A, comprising a single SH2 domain, is a novel protein of the SH2 signaling protein family. We have previously demonstrated SH2D4A is expressed ubiquitously in various tissues and is located in the cytoplasm. In this study we investigated the function of SH2D4A in human embryonic kidney (HEK) 293 cells using interaction analysis, cell proliferation assays, and kinase activity detection. SH2D4A was found to directly bind to estrogen receptor $\alpha$ (ER$\alpha$), and prevent the recruitment of phospholipase C-$\gamma$ (PLC-$\gamma$) to ER$\alpha$. Moreover, we observed its inhibitory effects on estrogen-induced cell proliferation, involving the protein kinase C (PKC) signaling pathway. Together, these findings suggested that SH2D4A inhibited cell proliferation by suppression of the ER$\alpha$/PLC-$\gamma$/PKC signaling pathway. SH2D4A may be useful for the development of a new anti-cancer drug acting as an ER signaling modulator.

Research on Components for Developing a Reading Competency Diagnostic Tool for Children and Adolescents with Disabilities (장애 아동·청소년 독서역량 진단도구 개발을 위한 구성요인 연구)

  • Soo-Kyoung Kim;Seongsook Choi;Jurng Hyun Whang;Sungune Yoon
    • Journal of Korean Library and Information Science Society
    • /
    • v.54 no.3
    • /
    • pp.129-163
    • /
    • 2023
  • The purpose of this study is to identify reading competency and its components according to the concept of reading competency in order to strengthen the reading competency of children and adolescents with disabilities, develop diagnostic questions, and provide basic data for the development of a reading competency diagnostic tool for children and adolescents with disabilities, Research methods include literature research, brainstorming, delphi survey, and preliminary research. As a result of the study, the components of the reading competency diagnostic tool are broadly divided into 2 areas (affective domain, environmental domain), 4 categories (reading motivation, reading attitude, human environment, and physical environment), and a total of 13 components in each of the 4 categories (Reading interest, reading value, reading recognition, reading expectations, reading habits, reading efficacy, reading immersion, reading anxiety (avoidance), home/family, school/teacher, peers, reading environment, media environment) and the corresponding questions. was developed. Based on these results, a direction for developing a reading competency diagnostic tool for children and adolescents with disabilities was presented.

Changes in the Expression of Ras-family Genes in Rats Exposed to Formaldehyde by Inhalation

  • Li, Guang-Yong;Lee, Hye-Young;Choi, You-Jin;Lee, Mi-Ock;Shin, Ho-Sang;Kim, Hyeon-Young;Lee, Sung-Bae;Lee, Byung-Hoon
    • Toxicological Research
    • /
    • v.24 no.3
    • /
    • pp.201-206
    • /
    • 2008
  • Exposure to formaldehyde(FA) is closely associated with adverse health effects such as irritation, inflammation, and squamous cell carcinomas of the nasal cavities. Owing to its rapid metabolism and elimination, exposure to FA does not always result in an increased concentration in blood or urine of animals and humans. Therefore, the development of biomarkers for FA exposure is necessary for risk assessment. In the present study, the effects of FA were investigated on the expression of genes involved in the MAPK pathway in vitro and results confirmed in rats exposed to FA by inhalation. Treatment of Hs 680.Tr human tracheal epithelial cells with FA induced gene expression for PDGFA, TNFSF11, SHC1, and HRAS. HRAS expression was also increased in tracheas of rats exposed to FA. In addition, FA exposure induced the expression of RASSF4, a member of the Rasassociation domain family of Ras effectors, in rat tracheas. In conclusion, data showed FA-inducible expression of genes involved in the MAPK pathway occurred and increased expression of HRAS and RASSF4 was noted in rat tracheas subchronically exposed to FA by inhalation. These genes may serve as molecular targets of FA toxicity facilitating the understanding of the toxic mechanism.

Erythropoietin-producing Human Hepatocellular Carcinoma Receptor B1 Polymorphisms are Associated with HBV-infected Chronic Liver Disease and Hepatocellular Carcinoma in a Korean Population

  • Kim, Kyoung-Yeon;Lee, Seung-Ku;Kim, Min-Ho;Cheong, Jae-Youn;Cho, Sung-Won;Yang, Kap-Seok;Kwack, Kyu-Bum
    • Genomics & Informatics
    • /
    • v.6 no.4
    • /
    • pp.192-201
    • /
    • 2008
  • Erythropoietin-producing human hepatocellular carcinoma receptor B1 (EPHB1) is a member of the Eph family of receptor tyrosine kinases that mediate vascular system development. Eph receptor overexpression has been observed in various cancers and is related to the malignant transformation, metastasis, and differentiation of cancers, including hepatocellular carcinoma (HCC). Eph receptors regulate cell migration and attachment to the extracellular matrix by modulating integrin activity. EphrinB1, the ligand of EPHB1, has been shown to regulate HCC carcinogenesis. Here, we sought to determine whether EPHB1 polymorphisms are associated with hepatitis B virus (HBV)-infected liver diseases, including chronic liver disease (CLD) and HCC. We genotyped 26 EPHB1 single nucleotide polymorphisms (SNPs) in 399 Korean CLD, HCC, and LD (CLD+HCC) cases and seroconverted controls (HBV clearance, CLE) using the GoldenGate assay. Two SNPs (rs6793828 and rs11717042) and 1 haplotype that were composed of these SNPs were associated with an increased risk for CLD, HCC, and LD (CLD+HCC) compared with CLE. Haplotypes that could be associated with HBV-infected liver diseases by affecting downstream signaling were located in the Eph tyrosine kinase domain of EPHB1. Therefore, we suggest that EPHB1 SNPs, haplotypes, and diplotypes may be genetic markers for the progression of HBV-associated acute hepatitis to CLD and HCC.