DOI QR코드

DOI QR Code

A Myostain-like Gene Expressed Highly in the Muscle Tissue of Chinese mitten crab, Eriocheir sinensis

  • Kim, Kyoung-Sun (Department of Marine Biology, Pukyong National University) ;
  • Jeon, Jeong-Min (Department of Marine Biology, Pukyong National University) ;
  • Kim, Hyun-Woo (Department of Marine Biology, Pukyong National University)
  • Published : 2009.09.30

Abstract

A complete cDNA, which encodes for a myostatin-like protein (Es-MSTN), was isolated from the Chinese mitten crab, Eriocheir sinensis. Es-MSTN was composed of 2,397 nucleotides and the open reading frame (ORF) specified a protein containing 468 amino acids. Es-MSTN exhibited 32% amino acid sequence identity and 52% similarity to human myostatin. Multiple sequence alignment analysis indicated that Es-MSTN possessed the conserved proteolytic cleavage site (RXXR) for maturation of the protein and nine cysteine residues for disulfide bridges. Besides the conserved structural features, Es-MSTN also exhibits its unique characters; a longer N-terminal domain which is involved in protein folding and latent form of myostatin and absence of the cleavage site for BMP-1/tolloid family of metalloproteinase to activate mature myostatin. Phylogenetic analysis suggests that Es-MSTN showed the closely related to both vertebrate myostatin and GDF11. Es-MSTN is expressed highly in the claw muscle, leg muscle, thoracic muscle and heart, and moderately in the hindgut suggesting that Es-MSTN may play important roles in the muscle tissues. As homolog of mammalian myostatin and GDF11, Es-MSTN may be involved in development of muscular tissue and further study will help to produce high-quality seafood.

Keywords

References

  1. Allendorph, G. P., WW, Vale and S. Choe. 2006. Structure of the ternary signaling complex of a TGF-beta superfamily member. Proc. Natl. Acad. Sci. USA, 103, 7643-7648 https://doi.org/10.1073/pnas.0602558103
  2. EI Haj, A.J. and D.F. Houlihan. 1987. ln vitro and in vivo protein synthesis rates in a crustacean musclε during the moult cycle. J. Exp. Biol., 127, 413-426
  3. Esquela, A.F. and S.J. Lee. 2003. Regulation of metanephric kidney development by growth/differentiation factor 11. Dev. Biol., 257, 356-370 https://doi.org/10.1016/S0012-1606(03)00100-3
  4. Forbes, D., M. Jackman, A. Bishop, M. Thomas, R. Kambadur and M. Sharma. 2006. Myostatin autoregulates its expression by feedback loop through Smad7 dependent mechanism. J. Cell. Physiol., 206, 264-272 https://doi.org/10.1002/jcp.20477
  5. Gad, J.M. and P.P. Tam. 1999. Axis development: the mouse becomes a dachshund. Curr. Biol., 9, R783-786 https://doi.org/10.1016/S0960-9822(00)80013-5
  6. Garikipati, D.K., S.A. Gahr and B.D. Rodgers. 2006. Identification, characterization, and quantitative expression analysis of rainbow trout myostatin-la and myostatin-l b genes. J. Endocrinol, 190, 879-888 https://doi.org/10.1677/joe.1.06866
  7. Haj, A., S. Clarke, P. Harrison and E. Chang. 1996. In vivo muscle protein synthesis rates in the American lobster Homarus amεricanus during the moult cycle and in response to 20-hydroxyecdysone. J. Exp. Biol., 199, 579-585
  8. Kim, H.W, E.S. Chang and D.L. Mykles. 2005. Three calpains and ecdysone receptor in the land crab Gecarcinus lateralis: sequences, expression and effects of elevated ecdysteroid induced by eyestalk ablation. J. Exp. Biol., 208, 3177-3197 https://doi.org/10.1242/jeb.01754
  9. Kim, H.W, D.L. Mykles, F.W Goetz and S.B. Roberts. 2004. Characterization of a myostatin-like gene from the bay scallop, Argopεcten irradians. Biochim. Biophys. Acta., 1679, 174-179 https://doi.org/10.1016/j.bbaexp.2004.06.005
  10. Lee, S.J. 2004. Regulation of muscle mass by myostatin. Annu. Rev. Cell. Dev. Biol., 20, 61-86 https://doi.org/10.1146/annurev.cellbio.20.012103.135836
  11. Lee, S.J. and A.C. McPherron. 2001. Regulation of myostatin activity and muscle growth. Proc. Natl. Acad. Sci. USA, 98, 9306-9311 https://doi.org/10.1073/pnas.151270098
  12. Lee, S.J., L.A. Reed, M.Y. Davies, S. Girgεnrath, M.E. Goad, K.N. Tomkinson, J.F. Wright, C. Barker, G. Ehrmantraut,J. Holmstrom, B. Trowell, B. Gertz, M.S. Jiang, S.M. Sebald, M. Matzuk, E. Li, L.F. Liang, E. Quattlebaum, R.L. Stotish and N.M. Wolfman. 2005. Regulation of muscle growth by multiple ligands signaling through activin type IIreceptors. Proc. Natl. Acad. Sci. USA, 102, 18117-18122 https://doi.org/10.1073/pnas.0505996102
  13. Lin, J., H.B. Arnold, M.A. Della-Fera, M.J. Azain, D.L. Hartzell and C.A. Baile. 2002. Myostatin knockout in mice increases myogenesis and decreases adipogenesis. Biochem. Biophys. Res. Commun, 291, 701-706 https://doi.org/10.1006/bbrc.2002.6500
  14. Lo, P.C. and M. Frasch. 1999. Sequence and expression of myoglianin, a novel Drosophila gene of the TGF-beta superfamily. Mech. Dev., 86, 171-175 https://doi.org/10.1016/S0925-4773(99)00108-2
  15. McPherron, A.C., A.M. Lawler and S.J. Lee. 1997a. Regulation of skeletal muscle mass in mice by a new TGF-beta supεrfamily member. Nature, 387, 83-90 https://doi.org/10.1038/387083a0
  16. McPherron, A.C. and S.J. Lee. 1997b. Double muscling in cattle due to mutations in the myostatin gene. Proc., Natl., Acad., Sci., USA, 94, 12457-12461 https://doi.org/10.1073/pnas.94.23.12457
  17. McPherron, A.C. and S.J. Lee. 2002. Suppression of body fat accumulation in myostatin-deficient mice. J. Clin. Invest., 109, 595-601 https://doi.org/10.1172/JCI13562
  18. Mykles, D.L. and D.M. Skinner. 1982. Crustacean muscles: atrophy and regeneration during molting. Soc. Gen. Physiol Ser., 37, 337-357
  19. Mykles, D.L. and D.M. Skinner. 1986. Four $Ca^{2+}$dependent proteinase activities isolated from crustacean muscle differ in size, net charge, and sensitivity to $Ca^{2+}$ and inhibitors. J. Biol. Chem., 261 , 9865-9871
  20. Ostbye, T.K., O.F. Wetten, A. Tooming-Klunderud, K.S. Jakobsen, A. Yafe, S. Etzioni, T. Moen and O. Andersen. 2007. Myostatin (MSTN) gene duplications in Atlantic salmon (Salmo salar):evidence for different selective pressure on teleost MSTN-1 and -2. Gene, 403, 159-169 https://doi.org/10.1016/j.gene.2007.08.008
  21. Rescan, P.Y., I. Jutel and C. Ralliere. 2001. Two myostatin genes are differentially expressed in myotomal muscles of the trout (Oncorhynchus mykiss). J. Exp. Biol., 204, 3523-3529
  22. Rodgers, B.D. and D.K. Garikipati. 2008. Clinical, agricultural, and evolutionary biology of myostatin: a comparative review. Endocr. Rev., 29, 513-534 https://doi.org/10.1210/er.2008-0003
  23. Rodgers, B.D., E.H. Roalson, G.M. Weber, S.B. Roberts and F.W. Goetz. 2007. A proposed nomenclature consensus for the myostatin gene family. Am. J. Physiol. Endocrin. Metab., 292, E371-372 https://doi.org/10.1152/ajpendo.00395.2006
  24. Rodgers, B.D. and G.M. Weber. 2001. Sequence conservation among fish myostatin orthologues and the characterization of two additional cDNA clones from Morone saxatilis and Morone americana. Comp Biochem. Physiol. B Biochem. Mol. Biol., 129, 597- 603 https://doi.org/10.1016/S1096-4959(01)00350-5
  25. Saharinen, J., M. Hyytiainen, J. Taipale and J. Keski-Oja. 1999. Latent transforming growth factor-beta binding proteins (LTBPs )--structural extracellular matrix proteins for targeting TGF-bεta action. Cytokine Growth Factor Rev., 10, 99-117 https://doi.org/10.1016/S1359-6101(99)00010-6
  26. Sharma, M., R. Kambadur, K.G. Matthews, W.G. Somers, G.P. Devlin, J.Y. Conaglen, P.J. Fowke and J.. Bass 1999. Myostatin, a transforming growth factor-beta superfamily member, is expressed in heart muscle and is upregulated in cardiomyocytes after infarct. J. Cell. Physiol., 180, 1-9 https://doi.org/10.1002/(SICI)1097-4652(199907)180:1<1::AID-JCP1>3.0.CO;2-V
  27. Skinner, D.M. 1966. Breakdown and reformation of somatic muscle during the molt cycle of the land crab, Gecarcinus lateralis. J. Exp. Zool., 163, 115-123 https://doi.org/10.1002/jez.1401630202
  28. Tamura, K., J. Dudley, M. Nei and S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) softwarε version 4.0. Mol. Biol. Evol., 24, 1596-1599 https://doi.org/10.1093/molbev/msm092
  29. Thomas, G. 2002. Furin at the cutting edge: from protein traffic to embryogenesis and disease. Nat. Rev. Mol. Cell. Biol., 3, 753-766 https://doi.org/10.1038/nrm934
  30. Thomas, M., B. Langley, C. Berry, M. Sharma, S. Kirk, J Bass and R. Kambadur. 2000. Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. J. Biol. Chem., 275, 40235-40243 https://doi.org/10.1074/jbc.M004356200
  31. Vianello, S., L. Brazzoduro, L. Dalla Valle, P. BeIvedere and L. Colombo. 2003. Myostatin expression during development and chronic stress in zebrafish (Danio rerio). Endocrinol, 176, 47-59 https://doi.org/10.1677/joe.0.1760047
  32. Wicks, S.J., T. Grocott, K. Haros, M. Maillard, P. ten Dijke and A. Chantry. 2006. Reversible ubiquitination regulates the Smad/TGF-beta signalling pathway. Biochem. Soc. Trans., 34, 761-763 https://doi.org/10.1042/BST0340761
  33. Wolfman, N.M., A.C. McPherron, W.N. Pappano, M.Y. Davies, K. Song, K.N. Tomkinson, J.F. Wright, L. Zhao, S.M. Sebald, D.S. Greenspan and S.J. Lee. 2003. Activation of latent myostatin by the BMPl/tolloid family of metalloproteinases. Proc. Natl. Acad. Sci. USA, 100, 15842-15846 https://doi.org/10.1073/pnas.2534946100
  34. Zhu, X., S. Topouzis, L.F. Liang and R.L. Stotish. 2004 Myostatin signaling through Smad2, Smad3 and Smad4 is regulated by the inhibitory Smad7 by a negative feedback mechanism. Cytokine, 26, 262-272 https://doi.org/10.1016/j.cyto.2004.03.007

Cited by

  1. Genes and growth performance in crustacean species: a review of relevant genomic studies in crustaceans and other taxa vol.5, pp.2, 2013, https://doi.org/10.1111/raq.12005
  2. vol.46, pp.6, 2015, https://doi.org/10.1111/jwas.12238
  3. Enhanced muscle regeneration in freshwater prawn Macrobrachium rosenbergii achieved through in vivo silencing of the myostatin gene vol.50, pp.5, 2009, https://doi.org/10.1111/jwas.12607