• 제목/요약/키워드: human activity recognition (HAR)

검색결과 20건 처리시간 0.022초

채널 상태 정보를 활용한 LoS/NLoS 식별 기반 인간 행동 인식 시스템 (LoS/NLoS Identification-based Human Activity Recognition System Using Channel State Information)

  • 권혁돈;권정혁;이솔비;김의직
    • 사물인터넷융복합논문지
    • /
    • 제10권3호
    • /
    • pp.57-64
    • /
    • 2024
  • 본 논문에서는 수신환경에 따라 변화하는 인간 행동 인식 (Human Activity Recognition, HAR)의 정확도를 향상시키기 위해 채널 상태 정보 (Chanel State Information, CSI)를 활용한 Line-of-Sight (LoS)/Non-Line-of-Sight (NLoS) 식별 기반 HAR 시스템을 제안한다. 제안 시스템은 수신환경을 고려한 HAR 시스템을 위해 Preprocessing phase, Classification phase, Activity recognition phase의 세 동작 단계를 포함한다. Preprocessing phase에서는 CSI 원시 데이터로부터 진폭이 추출되고, 추출된 진폭 내 노이즈가 제거된다. Classification phase에서는 데이터 수신환경이 LoS 환경 또는 NLoS 환경으로 분류되고, 수신환경 분류 결과를 기반으로 HAR 모델이 결정된다. 마지막으로, Activity recognition phase에서는 결정된 HAR 모델을 활용하여 인간의 동작을 앉기, 걷기, 서 있기, 부재중으로 분류한다. 제안 시스템의 우수성을 입증하기 위해, 실험적 구현을 수행하였으며 제안 시스템의 정확도를 기존 HAR 시스템의 정확도와 비교하였다. 실험 결과, 제안 시스템은 대조군 대비 16.25% 더 높은 정확도를 달성하였다.

Human Activity Recognition in Smart Homes Based on a Difference of Convex Programming Problem

  • Ghasemi, Vahid;Pouyan, Ali A.;Sharifi, Mohsen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권1호
    • /
    • pp.321-344
    • /
    • 2017
  • Smart homes are the new generation of homes where pervasive computing is employed to make the lives of the residents more convenient. Human activity recognition (HAR) is a fundamental task in these environments. Since critical decisions will be made based on HAR results, accurate recognition of human activities with low uncertainty is of crucial importance. In this paper, a novel HAR method based on a difference of convex programming (DCP) problem is represented, which manages to handle uncertainty. For this purpose, given an input sensor data stream, a primary belief in each activity is calculated for the sensor events. Since the primary beliefs are calculated based on some abstractions, they naturally bear an amount of uncertainty. To mitigate the effect of the uncertainty, a DCP problem is defined and solved to yield secondary beliefs. In this procedure, the uncertainty stemming from a sensor event is alleviated by its neighboring sensor events in the input stream. The final activity inference is based on the secondary beliefs. The proposed method is evaluated using a well-known and publicly available dataset. It is compared to four HAR schemes, which are based on temporal probabilistic graphical models, and a convex optimization-based HAR procedure, as benchmarks. The proposed method outperforms the benchmarks, having an acceptable accuracy of 82.61%, and an average F-measure of 82.3%.

Human Activity Recognition Using Body Joint-Angle Features and Hidden Markov Model

  • Uddin, Md. Zia;Thang, Nguyen Duc;Kim, Jeong-Tai;Kim, Tae-Seong
    • ETRI Journal
    • /
    • 제33권4호
    • /
    • pp.569-579
    • /
    • 2011
  • This paper presents a novel approach for human activity recognition (HAR) using the joint angles from a 3D model of a human body. Unlike conventional approaches in which the joint angles are computed from inverse kinematic analysis of the optical marker positions captured with multiple cameras, our approach utilizes the body joint angles estimated directly from time-series activity images acquired with a single stereo camera by co-registering a 3D body model to the stereo information. The estimated joint-angle features are then mapped into codewords to generate discrete symbols for a hidden Markov model (HMM) of each activity. With these symbols, each activity is trained through the HMM, and later, all the trained HMMs are used for activity recognition. The performance of our joint-angle-based HAR has been compared to that of a conventional binary and depth silhouette-based HAR, producing significantly better results in the recognition rate, especially for the activities that are not discernible with the conventional approaches.

Development of a Machine-Learning based Human Activity Recognition System including Eastern-Asian Specific Activities

  • Jeong, Seungmin;Choi, Cheolwoo;Oh, Dongik
    • 인터넷정보학회논문지
    • /
    • 제21권4호
    • /
    • pp.127-135
    • /
    • 2020
  • The purpose of this study is to develop a human activity recognition (HAR) system, which distinguishes 13 activities, including five activities commonly dealt with in conventional HAR researches and eight activities from the Eastern-Asian culture. The eight special activities include floor-sitting/standing, chair-sitting/standing, floor-lying/up, and bed-lying/up. We used a 3-axis accelerometer sensor on the wrist for data collection and designed a machine learning model for the activity classification. Data clustering through preprocessing and feature extraction/reduction is performed. We then tested six machine learning algorithms for recognition accuracy comparison. As a result, we have achieved an average accuracy of 99.7% for the 13 activities. This result is far better than the average accuracy of current HAR researches based on a smartwatch (89.4%). The superiority of the HAR system developed in this study is proven because we have achieved 98.7% accuracy with publically available 'pamap2' dataset of 12 activities, whose conventionally met the best accuracy is 96.6%.

A Robust Approach for Human Activity Recognition Using 3-D Body Joint Motion Features with Deep Belief Network

  • Uddin, Md. Zia;Kim, Jaehyoun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권2호
    • /
    • pp.1118-1133
    • /
    • 2017
  • Computer vision-based human activity recognition (HAR) has become very famous these days due to its applications in various fields such as smart home healthcare for elderly people. A video-based activity recognition system basically has many goals such as to react based on people's behavior that allows the systems to proactively assist them with their tasks. A novel approach is proposed in this work for depth video based human activity recognition using joint-based motion features of depth body shapes and Deep Belief Network (DBN). From depth video, different body parts of human activities are segmented first by means of a trained random forest. The motion features representing the magnitude and direction of each joint in next frame are extracted. Finally, the features are applied for training a DBN to be used for recognition later. The proposed HAR approach showed superior performance over conventional approaches on private and public datasets, indicating a prominent approach for practical applications in smartly controlled environments.

스마트폰 기반 행동인식 기술 동향 (Trends in Activity Recognition Using Smartphone Sensors)

  • 김무섭;정치윤;손종무;임지연;정승은;정현태;신형철
    • 전자통신동향분석
    • /
    • 제33권3호
    • /
    • pp.89-99
    • /
    • 2018
  • Human activity recognition (HAR) is a technology that aims to offer an automatic recognition of what a person is doing with respect to their body motion and gestures. HAR is essential in many applications such as human-computer interaction, health care, rehabilitation engineering, video surveillance, and artificial intelligence. Smartphones are becoming the most popular platform for activity recognition owing to their convenience, portability, and ease of use. The noticeable change in smartphone-based activity recognition is the adoption of a deep learning algorithm leading to successful learning outcomes. In this article, we analyze the technology trend of activity recognition using smartphone sensors, challenging issues for future development, and a strategy change in terms of the generation of a activity recognition dataset.

딥러닝 기반 운동 자세 교정 시스템의 성능 (Performance of Exercise Posture Correction System Based on Deep Learning)

  • 황병선;김정호;이예람;경찬욱;선준호;선영규;김진영
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권5호
    • /
    • pp.177-183
    • /
    • 2022
  • 최근 COVID-19로 인해 홈 트레이닝의 관심도가 증가하고 있다. 이에 따라 HAR(human activity recognition) 기술을 홈 트레이닝에 적용한 연구가 진행되고 있다. 기존 HAR 분야의 논문에서는 동적인 자세보다는 앉기, 일어서기와 같은 정적인 자세들을 분석한다. 본 논문은 동적인 운동 자세를 분석하여 사용자의 운동 자세 정확도를 보여주는 딥러닝 모델을 제안한다. AI hub의 피트니스 이미지를 blaze pose를 사용하여 사람의 자세 데이터를 분석한다. 3개의 딥러닝 모델: RNN(recurrnet neural networks), LSTM(long short-term memory networks), CNN(convolution neural networks)에 대하여 실험을 진행한다. RNN, LSTM, CNN 모델의 f1-score는 각각 0.49, 0.87, 0.98로 CNN 모델이 가장 적합하다는 것을 확인하였다. 이후 연구로는, 다양한 학습 데이터를 사용하여 더 많은 운동 자세를 분석할 예정이다.

Development of a Hybrid Deep-Learning Model for the Human Activity Recognition based on the Wristband Accelerometer Signals

  • Jeong, Seungmin;Oh, Dongik
    • 인터넷정보학회논문지
    • /
    • 제22권3호
    • /
    • pp.9-16
    • /
    • 2021
  • This study aims to develop a human activity recognition (HAR) system as a Deep-Learning (DL) classification model, distinguishing various human activities. We solely rely on the signals from a wristband accelerometer worn by a person for the user's convenience. 3-axis sequential acceleration signal data are gathered within a predefined time-window-slice, and they are used as input to the classification system. We are particularly interested in developing a Deep-Learning model that can outperform conventional machine learning classification performance. A total of 13 activities based on the laboratory experiments' data are used for the initial performance comparison. We have improved classification performance using the Convolutional Neural Network (CNN) combined with an auto-encoder feature reduction and parameter tuning. With various publically available HAR datasets, we could also achieve significant improvement in HAR classification. Our CNN model is also compared against Recurrent-Neural-Network(RNN) with Long Short-Term Memory(LSTM) to demonstrate its superiority. Noticeably, our model could distinguish both general activities and near-identical activities such as sitting down on the chair and floor, with almost perfect classification accuracy.

다중 입출력 FMCW 레이다를 활용한 합성곱 신경망 기반 사람 동작 인식 시스템 (CNN Based Human Activity Recognition System Using MIMO FMCW Radar)

  • 김준성;심재용;장수림;임승찬;정윤호
    • 한국항행학회논문지
    • /
    • 제28권4호
    • /
    • pp.428-435
    • /
    • 2024
  • 본 논문에서는 다중 입출력 주파수 변조 연속파 (MIMO FMCW; multiple input multiple output frequency modulation continuous wave) 레이다 기반 HAR (human activity recognition) 시스템의 설계 및 구현 결과를 제시하였다. 다중 입력 다중 출력 레이다 센서를 통한 포인트 클라우드 데이터를 활용하여 HAR 시스템을 구현하면 사생활 보호와 함께, 안전성 및 정확성 측면에서 장점이 있다. 본 논문에서는, MIMO FMCW 레이다 센서로부터의 포인트클라우드 데이터 기반 HAR을 위해 PointPillars와 DS-CNN (depthwise separable convolutional neural network)을 기반으로 최적 경량 네트워크를 개발하였다. 경량화된 네트워크를 통해 고해상도 포인트 클라우드 데이터를 처리하여 높은 인식 정확도와 함께 효율성을 달성하였다. 결과적으로, 98.27%의 정확도와 11.27M Macs (multiply-accumulates) 연산 복잡도로 구현 가능함을 확인하였다. 또한, 개발한 모델을 라즈베리파이(Raspberry-Pi) 시스템에 구현하여 최대 8 fps의 속도로 포인트 클라우드 데이터 처리가 가능함을 확인하였다.

Human activity recognition with analysis of angles between skeletal joints using a RGB-depth sensor

  • Ince, Omer Faruk;Ince, Ibrahim Furkan;Yildirim, Mustafa Eren;Park, Jang Sik;Song, Jong Kwan;Yoon, Byung Woo
    • ETRI Journal
    • /
    • 제42권1호
    • /
    • pp.78-89
    • /
    • 2020
  • Human activity recognition (HAR) has become effective as a computer vision tool for video surveillance systems. In this paper, a novel biometric system that can detect human activities in 3D space is proposed. In order to implement HAR, joint angles obtained using an RGB-depth sensor are used as features. Because HAR is operated in the time domain, angle information is stored using the sliding kernel method. Haar-wavelet transform (HWT) is applied to preserve the information of the features before reducing the data dimension. Dimension reduction using an averaging algorithm is also applied to decrease the computational cost, which provides faster performance while maintaining high accuracy. Before the classification, a proposed thresholding method with inverse HWT is conducted to extract the final feature set. Finally, the K-nearest neighbor (k-NN) algorithm is used to recognize the activity with respect to the given data. The method compares favorably with the results using other machine learning algorithms.