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This paper presents a novel approach for human 
activity recognition (HAR) using the joint angles from a 
3D model of a human body. Unlike conventional 
approaches in which the joint angles are computed from 
inverse kinematic analysis of the optical marker positions 
captured with multiple cameras, our approach utilizes the 
body joint angles estimated directly from time-series 
activity images acquired with a single stereo camera by co-
registering a 3D body model to the stereo information. The 
estimated joint-angle features are then mapped into 
codewords to generate discrete symbols for a hidden 
Markov model (HMM) of each activity. With these 
symbols, each activity is trained through the HMM, and 
later, all the trained HMMs are used for activity 
recognition. The performance of our joint-angle–based 
HAR has been compared to that of a conventional binary 
and depth silhouette-based HAR, producing significantly 
better results in the recognition rate, especially for the 
activities that are not discernible with the conventional 
approaches. 
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I. Introduction 

Human activity recognition (HAR) is defined as the 
recognition of different human activities utilizing external 
sensors, such as motion, acceleration, or video sensors. In 
recent years, HAR from video has evoked considerable interest 
among researchers of computer vision and image processing 
[1]-[5]. A key reason for this is the use of the outcomes of such 
recognition in practical applications, such as smart home, 
human computer interaction, automated surveillance, and 
human healthcare applications. For instance, an HAR system 
can be used at home to recognize a subject’s daily activities 
automatically based on which a medical doctor can analyze the 
history of various activities over a period of time to evaluate the 
condition of a subject’s health, which can be helpful for a better 
diagnosis and treatment. A general method for HAR starts with 
the extraction of key features and comparing them against the 
features of various activities. Thus, activity feature extraction, 
modeling, and recognition techniques become essential 
elements in this regard. Generally, HAR is a challenging task 
as it does not follow rigid syntax-like gesture or sign language 
recognition. Thus, a complete representation of a human body 
is necessary to characterize human movements properly.  

So far, 2D binary silhouettes are the most popular 
representations of human body that have been applied for 
HAR [1]-[5]. For instance, in 1991, Yamato and others utilized 
binary silhouettes followed by vector quantization and a hidden 
Markov model (HMM) to recognize some time-sequential 
tennis activities [1]. In 2002, Carlsson and Sullivan proposed a 
shape matching key-frame–based approach to recognize 
forehand and backhand strokes from tennis video clips in 
which they utilized the Canny edge detector to represent the 
shapes [2]. In 2004, the authors utilized principal component  
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Fig. 1. (a) Sample RGB image, (b) corresponding binary
silhouette, (c) depth silhouette, and (d) co-registered 3D
body model from a both hands up-down activity as
well as (e) sample RGB image, (f) corresponding
binary silhouette, (g) depth silhouette, and (h) co-
registered 3D body model from a boxing activity. 

(a) (b) (c) (d)

(e) (f) (g) (h)

 
 
(PC) features from binary silhouettes and optical-flow–based 
motion features in combination with an HMM to recognize 
different view-invariant activities [3]. In 2009, Uddin and 
others proposed independent component (IC) features of 
binary silhouettes to recognize five different activities by 
means of an HMM that showed the superiority of the IC-based 
local features over the PC-based global silhouette features [4]. 
Although binary silhouettes are very commonly employed to 
represent a wide variety of body configurations, they produce 
ambiguities by representing the same silhouette for different 
postures from different activities. That is to say, if a person 
performs hand movement activities in the direction of the 
camera, a different posture can correspond to the same 
silhouette as its two-level (that is, white or black) flat pixel 
intensity distribution. One clear example is shown in Fig. 1 in 
which Figs. 1(a) and (b) represent an RGB frame and its 
corresponding binary silhouette, respectively, from boxing and 
Figs. 1(e) and (f) an RGB and its corresponding binary 
silhouette from both hands up-down activity. It is obvious that 
the binary silhouettes do not seem to be a good choice to 
separate these two different postures. Also, from the binary 
silhouettes, it is impossible to obtain the difference between the 
far and near parts of human body in the activity video. To 
improve the silhouette representation, Uddin and others 
proposed IC features from the time-sequential activity depth 
silhouettes to be used with HMMs for robust human activity 
recognition [5]. Although depth silhouettes are better than 
binary silhouettes as shown in Figs. 1(c) and (g), they still 
present some ambiguities that cannot be resolved. However, as 
the human body consists of limbs and the joints inside them, if 

one can get the 3D joint-angle information, then one can form 
much stronger features than depth and binary features, which 
will lead to significantly improved HAR even for activities that 
are not recognizable with the conventional methods.  

As mentioned, to overcome the limitations of the binary and 
depth silhouettes, human activity recognition works more 
efficiently by deriving and using joint-angle information from a 
3D whole body model. Conventionally, 3D human body 
configuration is captured by multiple cameras in a predefined 
environment where optical markers are placed on a subject to 
capture the positions of body limbs in 3D [6]. The body joint 
angles are then extrapolated from the 3D coordinates of the 
located markers through inverse kinematic analysis. However, 
the marker-based system is restrictive to users and cannot be 
used for daily activity monitoring. That is why we try to 
develop a marker-free HAR system in this study. Lately, 
capturing 3D human body configuration from a sequence of 
images without markers is getting considerable attention. 
Monocular image-based approaches have been devised in this 
respect as in [7]-[9] where the authors formulated complex 
probabilistic relationships between the parameters of 3D 
human models and the likelihood using image features, such as 
edges, contours, and silhouettes. The model parameters were 
then found to be the ones most probable in the given likelihood. 
Although these monocular image-based approaches achieve 
considerable speed and accuracy in obtaining 3D human body 
postures, there is one inherent limitation of these approaches, 
that is, depth ambiguity. Basically with monocular images, 
some depth information becomes missing to recover the 
original object. This makes the monocular image-based 
approaches ill-posed and presents a great challenge. 

To overcome the disadvantages of monocular images in the 
3D pose estimation, multiview approaches have been 
proposed where each image was processed for modeling, and 
finally, the outcomes were combined to obtain accurate 3D 
model parameters [10], [11]. However, this kind of approach 
requires a specialized setup in which multiple cameras are 
installed at different view angles to capture comprehensive 
3D information. In general, deploying multiple cameras in a 
given location is not flexible. Also, it requires a complicated 
calibration process to synchronize the cameras, making this 
approach less practical for a daily use of HAR. These 
approaches have been mainly investigated for 3D pose 
estimation, not for HAR. 

To overcome the limitations mentioned above, Thang and 
others developed a method from which one can estimate the 
body joint angles from time-series pairs of stereo images (from 
only a single stereo camera) without attaching any markers to a 
human subject and without deploying multiple cameras [12], 
making the approach practical to be used in daily life. In this  
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approach, by co-registering a 3D human body model to the 
stereo information (that is, depth information), 3D body 
postures are recovered from each pair of stereo images in time, 
yielding the joint angles of each body joint. Two sets of 
exemplars of our body posture representations are shown in 
Figs. 1(d) and (h) where each 3D human body configuration 
makes a clear separation of the two different postures, and each 
body segment, represented as one ellipsoid, is connected as a 
joint.   

In this work, we report a novel method of HAR based on the 
body joint angles directly estimated from a pair of activity 
stereo images by co-registering a 3D body model to the stereo 
data. We have made several improvements on the original 
algorithm [12] to gain more speed and accuracy. To make the 
joint-angle features more robust, they are classified by linear 
discriminant analysis (LDA). Then, through a vector 
quantization process, the time-sequential joint-angle features 
are then mapped into discrete symbols to train each HMM per 
activity. Finally, each trained activity HMM is used to 
recognize each human activity. Our work focuses on HAR 
using the joint angles estimated without the markers and 
multiple cameras, yet with just a single camera. The feasibility 
of performing HAR based on this simple setup can be critical 
in practical applications, such as daily human activity 
monitoring without restrictions on a user. The average 
processing time of our proposed joint-angle–based HAR 
system takes 0.89 seconds per activity frame (at the resolution 
of 640×480) for co-registration and recognition (but 3.71  
seconds per frame in depth computation on a Pentium IV of  
3 GHz and 1 GB RAM), showing its feasibility for real-time 
HAR in the near future. 

The organization of the rest of this paper is as follows. We 
introduce the methodology in section II where the architecture 
of proposed system is elaborated from stereo image 
preprocessing to activity recognition by an HMM. We proceed 
to sections III and IV to explain experimental setups and results  
with some discussions, respectively. Finally, we give a 
conclusion in section V. 

II. Methodology 

Our HAR system consists of the following steps: (i) stereo 
image processing, (ii) 3D human body modeling, (iii) joint-
angle estimation, (iv) feature representation, and (v) training of 
HMMs for recognition. Figure 2 shows the overall architecture 
of our proposed activity recognition system.  

1. Stereo Image Processing 

To capture 3D information, we have utilized a stereo camera  

 

Fig. 2. Proposed human activity recognition system. 
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(Bumblebee 2.0 of Point Grey Research) and captured a pair 
of stereo RGB images at the same time in a manner similar to 
human eyes. The growing correspondence seeds (GCS) 
algorithm [13] is applied to obtain the displacements of an 
image pair to produce a disparity image. Then, the depth 
value Z of each point in 3D is computed from the disparity 
image by 

,fbZ
D

=                     (1) 

where f is the focus length, b is the baseline, and D is the 
disparity value. The two remaining coordinates X and Y are 
given by 

,uZX
f

=                     (2) 

,vZY
f

=                      (3) 

where u and v are the column and row index of the pixel in the 
disparity image, respectively. 

2. 3D Human Body Modeling 

Our articulated human body model is depicted in Fig. 3, 
where each segment of the body model is controlled by a series 
of the transformations specified by kinematic parameters.  

At each joint, there are two degrees of freedom (DOF) that 
determine the transformation from the current segment to the 
next segment. The transformation from the global coordinate 
system to the local coordinate system attached at the body’s hip 
requires six DOF (that is, three translations and three rotations). 
For simplification, we have utilized a limited number of the 
kinematic parameters, but this is enough to distinguish the 
main characteristics of each human posture.  

There are a total of 14 body segments, 9 joints (that is, two  
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Fig. 3. (a) Articulated skeletal human body model and (b) two
rotational Euler angles around the x-axis and z-axis (two DOF
at each joint) controlling the movement of each segment. 
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Fig. 4. Sample of (a) skeletal model, (b) computational model with
ellipsoids, and (c) synthetic model with super-quadrics. 
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knees, two hips, two elbows, two shoulders, and one neck), and 
24 DOF (that is, two DOF to the horizontal and vertical 
direction, respectively, at each joint and six DOF for the 
transformation from the global coordinate system to the local 
coordinate system at the body’s hip). All of the 24 DOF 
represent the kinematic parameter 1 2 24( , ,..., )θ θ θ θ=  of the 
human model. In addition, another synthetic human model 
using the super quadric is also introduced here for displaying 
the estimated human postures. The formulation of the super-
quadric surface is introduced in [12]. Figure 4 shows the 
samples of a skeletal model, computational model with 
ellipsoids, and human model with super-quadrics.  

3. Joint-Angle Estimation  

In our approach of joint-angle estimation, we first define our 
3D human model with a set of connected ellipsoids which are 
parameterized by kinematic angles. The angular kinematic 
angles are adjusted to fit the 3D model to the observation. 
Consequently, we can reconstruct human posture reflected in 
stereo images. Figure 5 shows the basic steps to estimate the 
joint-angle features, thus obtaining 3D human body posture. 
The first step to estimate the 3D data from depth images has 
been presented in the previous section. In the second step, we 
have included a tracking algorithm to locate the position of a 
moving subject. In previous work [12], the authors developed a  

 

Fig. 5. Basic steps of the proposed body-joint-angle estimation.
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Fig. 6. Sample of (a) 3D data of moving person, (b) noise 
removal of 3D data of moving subject, and (c) detecting 
head and torso of sitting person. 
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system to estimate human body postures of a subject 
performing activities in a fixed location, making this step 
unnecessary. In this work, concerned with recovering human 
body postures of a subject moving in the horizontal (for 
example, walking) and vertical direction (for example, sitting), 
we have added the tracking step to locate the subject’s position. 
In addition, the subject’s location is used to remove the artifacts, 
which are a part of 3D data remaining far from the subject as 
depicted in Fig. 6(b). Furthermore, face detection is utilized to 
detect the head and torso areas as depicted in Fig. 6(c), which 
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are used in the labeling step of the co-registration algorithm. 
Finally, the six parameters of the global transformation from 
the global coordinate system to the local coordinate system at 
the body’s hip are computed with the subject’s location 
obtained by the tracking step, giving higher precision. 

Let a pair of parameters H B[ , ]t ts s present the location of a 
human subject where H

ts and B
ts  are the two 3D vectors 

locating the center of the head and the body at the time index t. 
From the information of RGB images and 3D data, we can 
obtain the approximate values of H B[ , ]t ts s by H B[ , ] :t tr r  we 
detect the head region from RGB images and 3D data by the 
face detection algorithm using the Haar features [14] to 
compute H ,tr and we track the body region from RGB images 
and 3D data using the mean shift algorithm [15] to get a value 
of B.tr  Let H

ts′ and B
ts′ be the velocity of the head and body 

at the time index t. A set of equations established to track the 
changes from H B

1 1[ , ]t ts s− − to H B[ , ]t ts s and the relationship 
between the real human location H B[ , ]t ts s  and the raw 
estimation H B[ , ]t tr r  is given by 

H H H
1 1 1,t t ts s s τ υ− −′= + −                   (4) 

B B B
1 1 2 ,t t ts s s τ υ− −′= + −                   (5) 

H H
1 3 ,t ts s υ−′ ′= +                      (6) 

B B
1 4 ,t ts s υ−′ ′= +                     (7) 

H H
1,t tr s ζ= +                      (8) 

B B
2 ,t tr s ζ= +                      (9) 

H B
3 ,t td s s ζ= − +                 (10) 

where 1 2 3 4 1 2, , , , , ,υ υ υ υ ζ ζ and 3ζ are random variables drawn 
from a Gaussian distribution, τ  is the time interval between 
two frames, and d is the constant distance between the center of 
the head and the center of the body. We update the current 
subject’s position H B[ , ]t ts s from the previous estimation 

H B
1 1[ , ]t ts s− − and from the observation H B[ , ]t tr r  by extended 

Kalman filter [16]. The face and torso regions are estimated 
from H B[ , ]t ts s  by the method presented in [12]. 

In the following step, we co-register the 3D model into the 
3D data. Although more details regarding the co-registration 
processes can be found in [12], the co-registration including 
labeling and model fitting can be summarized as follows. 

1 2= ( , ,..., )ND X X X is considered a collection N 3D points, 
and I  denotes an RGB image. The supplementary variable 

1 2= ( , ,..., )NV v v v  is introduced to determine to which part 
(that is, ellipsoid) of body each point should belong. Here, a 

probabilistic relationship between the 3D model and the 
observed data is presented by the posterior probability between 
the label V and the kinematic parameter θ  given the 3D data 
D and the RGB image I :  

( , | , ) ( ) ( | ) ( | ) ( | , ).P V I D P V P I V P D V P D Vθ θ∝    (11) 

We now sequentially define each element of (11). The 
smoothness prior P(V), found from the Potts model [17], 
presents the pairwise probabilistic relationship of each pair of 
3D points. The head and torso areas detected in RGB images 
and 3D data by the tracking step provide extra information 
about the label of 3D points. This information can be obtained 
by the likelihood term ( | )P I V . If the geodesic distance is the 
shortest path distance in a graph using the Dijkstra’s algorithm 
[18], the pairwise geodesic relationship ( | )P D V establishes 
some geodesic distance constraints of each pair of 3D points. 
Two 3D points with two corresponding labels that disregard 
these constraints (that is, too close or too far) are penalized to 
decrease the probability ( | )P D V . Finally, the reconstrution 
error ( | , )P D V θ is related to the total Euclidean distances 
from each point to the ellipsoids corresponding to the body 
parts.  

We can see that the most suitable posture with the observed 
data will correspond to the kinematic parameter *θ  that 
maximizes the posterior probability given in (11). The EM 
algorithm is used for this optimization problem with the 
appearance of the latent variable V. The proposed algorithm 
formulated in an EM framework is an iterative procedure with 
two main steps, that is, E-step and M-step:  

•E-step (labeling): Assuming that the current value of the 
kinematic parameter is oldθ θ= , the E-step estimates the label 
assignments by computing the distribution of 

old( , , ).P V I Dθ  The true distribution of V, given 
that old , , and ,I Dθ  is intractable to computation, so we use the 
variational inference method called mean field [19] to 
approximate old( , , ).P V I Dθ  

•M-step (model fitting): With the label assignment  

old( , , )P V I Dθ  provided by the E-step, the M-step 
maximizes the term 

old old( , , )[log( ( , , ))]P V I DE P V I Dθ θ or 
equivalent to minimize the reconstruction error between the 
model and the cloud of 3D points that is solved by the 
Levenberg-Marguardt least square estimator. Since the 3D data 
contains a thousand 3D points, a direct estimation of the 
kinematic parameters from a cloud of 3D points is very 
complicated and time consuming. We grouped a set of 3D 
points with the same assigned label into a Gaussian cluster. 
Each Gaussian cluster is parameterized by a Gaussian  
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Fig. 7. Three sequential RGB images and corresponding 3D body
models from (a) left hand up-down, (b) right hand up-
down, and (c) both hands up-down activities. 

(a) 

(b) 

(c) 

 
 

distribution 1( , )i iN m −∑ where mi is the center of the cluster 
and 1

0
T

i i i iR R−∑ = Λ  the covariance matrix. Here, the 
constant matrix 0iΛ configures the shape of the Gaussian 
cluster and Ri is a rotation matrix of the Gaussian cluster. The 
maximum likelihood is used to estimate the parameters (mi, Ri) 
of each cluster. By estimating the kinematic parameters from a 
small number of clusters, we have consequently reduced the 
computational time of the co-registration algorithm, consuming 
less than 1 second per frame where the original approach 
presented in [12] took about 2 seconds for the same task. 

The co-registration is iterated to minimize the differences 
between the 3D model and the observed data. Finally, it 
recovers the correct human posture with the estimated joint 
angles. Figure 7 shows three sequential RGB images and the 
corresponding 3D body models from (a) left hand up-down, 
(b) right hand up-down, and (c) both hands up-down activities, 
respectively. 

 

Fig. 8. Changes in vertical DOF of the joint angles of (a) left 
elbow, (b) right elbow, and (c) both elbows from a 
sequence of left hand up-down, right hand up-down, and 
both hands up-down activities. 
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4. Feature Representation  

The 3D human postures are distinguished by a set of the 
kinematic parameters. In our work, the raw kinematic 
parameters, the joint angles without any adjustment, are used as 
the features of the human posture because these features reveal 
the local movements of body parts. The 24D feature vector of 
each human posture at time t is expressed as 

global _ to _ local, left _ shoulder, right _ shoulder, left _ crotch,

right _ crotch, neck, left _ elbow, right _ elbow, left _ knee, right _ knee

[

],

t =F θ θ θ θ
θ θ θ θ θ θ

 

(12) 
where global _ to _ localθ  consists of six DOF of the transformation 
from the global coordinate system to the local at the body’s hip 
and the rest of the parameters representing a set of kinematic 
angles consisting of two DOF (that is, horizontal and vertical 
directions, respectively) at each body joint. 

Figures 8(a), (b), and (c) show changes in the vertical DOF 
of the joint angles of left elbow, right elbow, and both elbows 
from a sequence of left hand up-down, right hand up-down,  
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Fig. 9. Variance plot of joint angles from a sequence of (a) left
hand up-down, (b) right hand up-down, and (c) both
hands up-down activities. 

0 2 4 6 8 10 12 14 16 18 20 22 240 

0.2 

0.4 

0.6 

0.8 

Joint angle label 

Va
ria

nc
e 

0 2 4 6 8 10 12 14 16 18 20 22 24
0 

0.2 

0.4 

0.6 

0.8 

Joint angle label 

Va
ria

nc
e 

0 2 4 6 8 10 12 14 16 18 20 22 24
0 

0.2 

0.4 

0.6 

0.8 

Joint angle label 

Va
ria

nc
e 

(a) 

(b) 

(c) 

 
 
and both hands up-down, respectively. Figure 9 represents a 
variance plot of joint-angle features of three different activities 
showing remarkable changes in the vertical DOF of the joint 
angles of the left elbow, right elbow, and both elbows from a 
sequence of left hand up-down, right hand up-down, and both 
hands up-down, respectively. Once the features vector for a 
frame is defined, we can define an activity clip as a sequence of 
feature vectors as 1 2( , ,..., ),TF F F  where T indicates the 
number of frames in the activity video. 

For the final step of the feature extraction, LDA is performed 
on the angle parameters extracted from the joints of the 3D 
body model. Basically, LDA is based on the class specific 
information which maximizes the ratio of between-class scatter 
matrix and the within-class scatter matrix [20]. The optimal 
discriminant vector matrix Wlda is chosen from the 
maximization of ratio of the determinant of the between class 
scatter matrix SB of the projection data to the determinant of the 
within class scatter matrix SW of the projected samples as 

lda lda
lda

lda lda

| |
,

| |

T
B

T
W

W S W
J(W )

W S W
=              (13) 

where Wlda is the set of discriminant vectors of SB and SW  

 

Fig. 10. 3D plot of (a) PC and (b) LDA features in local 
coordinate system from left hand up-down, right hand 
up-down, both hands up-down, boxing, left leg up-
down, and right leg up-down activities. 
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corresponding to the c–1 largest generalized eigenvalues.  

The discriminant ratio is derived by solving the generalized 
eigenvalue problem such that 

lda ldaB WS W = S WΛ               (14) 

where Λ is the eigenvalue matrix. This discriminant vectors 
Wlda forms the basis of the (c–1) dimensional subspace for a  
c-class problem.   

Usually, the LDA algorithm looks for the vectors in the 
underlying space to create the best discrimination among 
different classes. Thus, the extracted features from 3D 
modeling from the images of different activities can be 
extended by LDA. The feature vectors using LDA on the 
angular joint features can be represented according to  

lda .T
i iL = FW                   (15) 

Thus, utilizing LDA on the joint-angle features, a more 
robust feature space can be obtained that separates the feature 
vectors of each class. Figure 10(b) shows the 3D plot of the 
LDA-based feature vectors where each activity feature is 
concentrated in a particular region of the feature space,  
indicating good separation.  
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5. HMMs for Activity Training and Recognition 

In our work, we adopt HMM due to its capability of 
handling spatio-temporal features as demonstrated in some 
previous studies [1], [3]-[5]. An HMM can be denoted as 

{ }, , ,H A B π= where A denotes the state transition probability, 
B the observation symbol probability, and π the initial state 
probability. The following subsections illustrate the codebook 
generation to obtain discrete symbol sequences from the body-
joint-angle features and activity training and recognition 
procedure, respectively. 

A. Codebook Generation 

The next step after obtaining the joint-angle features is to 
partition the feature space for vector quantization. We 
symbolize the joint-angle feature vectors from the activity 
frames before applying to train or recognize by the HMM. As 
a result, an efficient codebook of vectors must be generated 
using a vector quantization algorithm from the training 
vectors. In our work, the Linde, Buzo, and Gray (LBG) 
clustering algorithm [21] is used to generate a codebook from 
the training feature vectors. Initial selection of the centroids is 
obtained first. Then, until a convergence criterion is met, it 
finds the nearest centroid for each sample to assign it to that 
cluster and computes the center of all clusters after assigning 
all samples to the new clusters. However, the initialization is 
done by splitting the centroid of the whole dataset. It starts 
with a codeword size of one and recursively splits into two 
codewords. After splitting, optimization of the centroids is 
done to reduce the distortion. Since it follows binary splitting, 
the size of the codebook becomes a power of two. To obtain a 
symbol for a sample feature vector, the vector is compared to 
all the codewords and the index of one is chosen having a 
minimum distance. Figure 11 shows the basic steps to 
produce a codebook through LBG and symbol selection, that 
is, cluster, using the codebook.  

Figure 12 shows the codeword index patterns for a sample 
testing feature vector sequence of different activities where all 
the sequences follow separate patterns though the same 
codeword can be shared by different activity feature vectors. 
Once a codebook is designed, the index numbers of the 
codewords are used as symbols to apply on the HMM. The 
index number of the closest codeword from the codebook is 
used as a symbol to represent a feature vector. Hence, every 
activity image is assigned a symbol. For instance, K image 
sequences of T length are converted to K sequences of T 
symbols. The symbols are the observations O. 

B. Activity Training and Recognition 

The obtained symbol sequences are used to train HMMs to 

 

Fig. 11. Basic steps for (a) codebook generation and (b) symbol 
selection.
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Fig. 12. Patterns of codeword indices for test feature vector 
sequence of different activities. 
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learn the proper model for each activity such as left hand up-
down-HMM or right hand up-down-HMM. We choose four-
state left to right HMMs in this study to model sequential 
events of human activities based on our investigations.  

For recognition of a test activity, the obtained observation 
symbol sequence 1 2{ , ,..., }TO O O O= through the vector 
quantization process is used to determine the proper activity 
HMM from all the trained activity HMMs by means of the 
highest likelihood as 

1,2,...,
decision argmax{ },i

i M
L

=
=               (16) 

Pr( ),i iL O H=                  (17) 

where Li 
indicates the likelihood of i-th HMM Hi and M 

number of activities. More details regarding human activity 
training and testing through HMMs are available in our 
previous works [4], [5]. 
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III. Experimental Setups  

We assume that every training and testing activity video clip 
contains a single person performing a single activity. As there 
are no standard stereo camera-based video databases available 
for HAR, we built our own database for eight different 
activities (that is, left hand up-down, right hand up-down, both 
hands up-down, boxing, left leg up-down, right leg up-down, 
walking, and sitting) to be trained and recognized via the 
proposed approach. A total of 15 and 40 image sequences of 
each activity were prepared to use for training and recognition, 
respectively. 

We started our experiments with the traditional binary 
silhouette-based HAR [1], [3], [4]. After background 
subtraction, the region of interests containing the binary 
silhouettes were extracted from every frame. As PCA is 
generally used for binary silhouette feature extraction, it was 
applied on all the activity silhouettes for dimension reduction 
as well as global feature extraction [4]. ICA is superior to 
PCA by extracting the local features [4], and hence it was also 
utilized to obtain better performance than PCA. After PCA 
and ICA, 150 features were considered in the feature space as 
it is acknowledged that having a greater number of features 
results in better performance. Finally, the extracted features 
from the activity image sequences were applied in 
combination with HMMs for training and recognition. For 
further experiments, we replaced the binary silhouettes with 
depth ones and applied the same feature extraction techniques 
with an HMM to achieve better HAR performance. Thus, to 
compare the performance of the proposed system with the 
binary and depth silhouette-based approaches, PC and IC-
based experiments were designed in this regard. The same 
number of training and testing sequences as 3D model-based 
experiments were applied for both the binary and depth 
silhouette-based activity recognition. 

IV. Experimental Results and Discussions 

Since the binary silhouettes from some activities used in our 
experiments are similar to each other, the recognizer shows the 
poor results as shown in Table 1.  

Usually, ICA is considered to be better than PCA for binary 
silhouette feature extraction [4], and our binary silhouette-
based experiments also demonstrate the superiority of ICA 
over PCA, showing better HAR performance. Moreover, 
during the experiments, different activities shared the same 
binary silhouettes and hence produced ambiguities that results 
in poor recognition rates in both the cases of ICA and PCA-
based approaches.  

As depth silhouettes represent a human body better than the  

Table 1. Experimental results using binary silhouette features. 

Approach Activity 
Recognition 

rate (%) 
Mean 
(%) 

Standard 
deviation

Left hand up-down 47.50 
Right hand up-down 55 
Both hands up-down 60 

Boxing 20 
Left leg up-down 60 

Right leg up-down 67.50 
Walking 70 

PCA-based 
HAR 

Sitting 85 

58.12 19.03 

Left hand up-down 47.50 
Right hand up-down 60 
Both hands up-down 67.50 

Boxing 30 
Left leg up-down 72.50 

Right leg up-down 72.50 
Walking 75 

ICA-based 
HAR 

Sitting 87.50 

64.06 18.03 

Table 2. Experimental results using depth silhouette features. 

Approach Activity 
Recognition 

rate (%) 
Mean 
(%) 

Standard 
deviation

Left hand up-down 82.50 
Right hand up-down 80 
Both hands up-down 75 

Boxing 77.50 
Left leg up-down 80 

Right leg up-down 80 
Walking 80 

PCA-based 
HAR 

Sitting 90 

80.63 4.38 

Left hand up-down 85 
Right hand up-down 82.50 
Both hands up-down 80 

Boxing 80 
Left leg up-down 82.50 

Right leg up-down 80 
Walking 87.50 

ICA-based 
HAR 

Sitting 90 

83.44 3.77 

 

binary ones, we continued our experiments to the depth 
silhouette-based human activity recognition. ICA outperforms 
PCA regarding the binary silhouette-based HAR [4], [5];  
hence, we preferred to apply ICA on the depth silhouettes for  
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Table 3. Experimental results using 3D joint-angle features. 

Approach Activity Recognition 
rate (%) 

Mean 
(%) 

Standard 
deviation

Left hand up-down 87.50 
Right hand up-down 97.50 
Both hands up-down 87.50 

Boxing 95 
Left leg up-down 92.50 

Right leg up-down 95 
Walking 92.50 

Joint-angle 
based 
HAR 

Sitting 95 

92.81 3.65 

Left hand up-down 97.50 
Right hand up-down 100 
Both hands up-down 95 

Boxing 97.50 
Left leg up-down 97.50 

Right leg up-down 100 
Walking 97.50 

LDA of 
joint-angle 

based 
HAR 

Sitting 100 

98.13 1.77 

 

better HAR. Table 2 presents the depth silhouette-based 
experimental results, showing both the ICA and PCA-based 
approaches. The experimental results show the superiority of 
the depth silhouettes over the binary ones and ICA over PCA. 

However, we continued our HAR study to the 3D model-
based features where far better recognition performance than 
the binary and depth silhouette-based approaches were  
obtained as listed in Table 3. We first applied the joint angles 
directly with HMM and achieved superior recognition rate, 
92.81%, over the binary and depth silhouette-based approaches, 
proving the joint angles are better features for  
HAR. Since LDA is a powerful tool to find out the 
underlying feature space to classify the feature vectors 
linearly, a better feature space can be created applying LDA 
classification over the 3D model-based joint-angle features. 
Hence, the LDA-based experiments over the joint-angle 
features show the highest recognition rate, 98.13%, over 
others. Thus, our proposed approaches using a 3D model 
produces much better recognition performance for the complex 
activities that are not discernable with the binary and depth 
silhouette-based approaches. 

V. Conclusion 

In this paper, we have proposed a novel approach for human 
activity recognition with an HMM utilizing 3D body joint 

angles directly estimated from a time-series stereo images 
without optical markers, their inverse kinematic analysis, and 
multiple cameras. Our proposed HAR system, utilizing the 
body joint angles as features for HAR, shows superior 
recognition performance over the conventional approaches of 
utilizing binary or depth body silhouettes. Our experimental 
results on the eight different activities reach the mean 
recognition rate of 98.13%, whereas the conventional binary 
and depth silhouette-based approaches achieved 64.06% and 
83.44% at best. Our marker-free HAR system should be practical 
in many applications in the fields of smart homes and video-
games. 
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