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1  |   INTRODUCTION

Monitoring and recognition of human activity patterns col-
lected by motion sensors is currently a popular research topic. 
Human activity recognition (HAR) has been used in several 
different domains such as robotics [1‒3], computer engineer-
ing [4,5], healthcare [6], natural sciences [7], and industrial 
applications [8,9]. Understanding of human activity involves 
activity recognition and activity pattern discovery. HAR aims 
to provide highly accurate detection of human activities by 
adopting a predefined activity model. To do so, a high level 
conceptual model must first be built and run by structuring 
an appropriately pervasive system. In contrast, discovery of 

activity patterns is more closely related to identifying un-
known patterns directly from low‐level sensor data without 
applying any predefined models or assumptions.

Previous research has proven that machine learning meth-
odologies work efficiently to classify different activities from 
sensor data [10‒12]. Some types of sensors used in HAR sys-
tems are digital cameras, depth sensors, wearable sensors, 
and gyro sensors [13‒19]. Sensor‐based systems require two 
main steps. The first step is the calculation of relevant fea-
tures based on a sensor's acquired data. In the second step, a 
chosen classification algorithm defines the activity in accor-
dance with the features obtained in the first step. Common 
features contain statistics extracted from time‐domain signal 
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analysis, frequency‐domain analysis, and wavelet analysis, 
which is also known as time‐frequency analysis.

Vision and other signal‐based sensors [20‒24] are used to 
merge technologies with advanced worldwide practical ap-
plications and play major roles in science and industry. These 
technologies provide comfort in daily activities and enhance 
the quality of life.

This paper proposes a biometric system that uses angles 
between skeletal joints to recognize human activities in 3D 
space based on RGB‐depth sensor data, which could be use-
ful for elderly care and video surveillance systems. Simply 
stated, the system obtains particle joint angle pairs and stores 
them using the sliding kernel method. After creating a feature 
set, Haar coefficients of the features are obtained, and the 
number of features is then reduced by applying an averaging 
dimension reduction technique.

A proposed thresholding method using the inverse Haar 
wavelet transform (HWT) is applied to enhance the signals 
for better classification. HWT is commonly applied to fil-
ter out data noise, reduce data size, and detect singularities. 
Thus, HWT is highly effective in time series data processing. 
Finally, the k‐nearest neighbor (k‐NN) algorithm is applied to 
classify the real‐time data originating from the sensor. This 
paper is organized as follows; Section 1 provides a brief in-
troduction of the proposed study. In Section 2, HAR applica-
tions regarding previous approaches are reviewed. In Section 
3, the proposed algorithm for human activity recognition is 
discussed in detail. In Section 4, the experimental environ-
ment is presented. In the final section, the advantages and 
limitations of the proposed study and further improvements 
for better performance are discussed.

2  |   PREVIOUS APPROACHES 
USING HAR

Human activity recognition has been intensively studied over 
the past several years. In [25], re‐identification of persons 
in two different mediums was accomplished using SIFT 
and Bag‐of‐Features. The use of skin joint features obtained 
from RGB‐depth sensors using HAR to track humans was 
proposed in [26]. The authors in [27,28] used local and hy-
brid features for facial analysis. In [29], motion detection was 
achieved in real‐time using multiple cameras.

The majority of HAR studies can be categorized under 
two types: vision‐based and sensor‐based methods. A vision‐
based study is presented in [30] in which the authors estimate 
the simultaneous pose and shape of articulated objects by 
using a single depth camera. First, 3D transformations of each 
skeletal joint are illustrated using a twist map and exponen-
tial maps, and the articulated deformation model constructed 
from the maps is then combined with a probabilistic model to 
carry out pose tracking. In [31], the authors suggested using 

the representation of intermediate body parts to map the es-
timation of poses into a per‐pixel classification problem and 
then restructure the resulting body parts to construct confi-
dence‐scored 3D proposals of multiple body joints. Human 
pose estimation based on a single depth camera was proposed 
in [32], and relies on the correlations among articulated and 
generalized Gaussian kernels. The approach consists of em-
bedding the kinematic skeleton into the Gaussian kernels and 
constructing tree‐structured templates from several multivar-
iate Gaussian kernels with quaternion‐based rotation.

In [33] a new skeleton‐based method is proposed to de-
scribe the spatio‐temporal aspects of an activity data sequence 
via the Minkowski and cosine distances between 3D skele-
tal joints. In [34], multifeatures along with a hidden Markov 
model (HMM) are used with a single camera for a healthcare 
application. Spatial‐temporal features for HAR were evaluated 
in [35,36]. In [37], graph formulation is employed for abnor-
mal activity recognition. Although there are some RGB‐based 
studies in the literature, the applications suffer in environments 
that are totally dark or where illumination changes are present, 
despite the use of a multi‐camera system consisting of eight 
cameras installed to view a room from every possible angle 
and to overcome an issue with subject occlusion, for exam-
ple [33]. However, unlike RGB‐based methods, depth‐based 
methods are invariant to illumination changes. In sensor‐based 
studies, authors have proposed the use of multiple accelerom-
eters, wearable sensors, and other types of sensors. In [38], 
the authors invented a system which is based on systematic 
performance analysis of motion‐sensor‐captured behavior for 
human activity recognition via smart phones. Sensory data se-
quences using smart phones were collected while participants 
in the experiment performed typical and daily activities. An 
activity unit was then characterized by time, frequency, and 
wavelet domain features. By means of various classification 
algorithms, both personalized and generalized models were 
created and performed activity recognition. Sikder and others 
proposed a new distance metric called the log‐sum distance 
to calculate the difference between two sequences of positive 
numbers [39]. Basically, the log‐sum distance measures the 
motion data gathered from daily activities. Wearable sensors 
were used for human behavior analysis in [40]. Another study 
used pyroelectric sensors for abnormal activity detection [41].

In contrast, internet of things (IoT)‐based HAR systems 
have also been proposed. Subasi and others proposed an in-
telligent m‐healthcare system using IoT technology [42]. 
The motivation was to provide pervasive human activity rec-
ognition using data mining algorithms. Additionally, deep 
learning algorithms have been recently applied to vision‐
based HAR systems by Wang, Simonyan and Zisserman, and 
Karpathy and others in 2014 [43‒45]. The authors turn the 
task of action recognition into one of image classification 
to handle over‐fitting problems caused by the small num-
ber of annotated training examples. Because some actions 
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are highly associated with certain objects and static poses, 
the static appearance by itself could be a useful solution. 
Recently, long‐short term memory (LSTM) networks have 
been used in different approaches. Inspired by the success of 
the weightlessness feature, Tao and others developed two‐di-
rectional features for bidirectional long short‐term memory 
(BLSTM) to augment learning in HAR systems. For higher 
accuracy, a new classifier named the multi‐column BLSTM 
(MBLSTM) that combines various acceleration signal fea-
tures for activity recognition is presented [46].

3  |   PROPOSED HUMAN ACTIVITY 
RECOGNITION MODEL

3.1  |  Problem definition
In this study, the main motivation is to develop a HAR system 
which has low cost and high efficiency. To do so, RGB‐depth 
based system (a camera‐based HAR system) using skeletal 
angle information is proposed. The proposed approach obtains 
eight different angles of skeletal joints. To obtain the angle in-
formation, skeleton detection and tracking is first performed 
using Microsoft's Kinect SDK 2.0. Because each joint is de-
fined in the SDK, 3D angles can be calculated. Joint pairs are 
selected with respect to the relevance of basic human activities 
as defined in related studies. Previous approaches [47,48] show 
that there is a direct relevance between angle motion sequences 
and human activities. In particular, the main motivation for 
using angles is that angles are scale and rotation invariant. The 
flowchart of the proposed method is shown in Figure 1.

3.2  |  Flow analysis of the 
proposed algorithm

3.2.1  |  Angles between joints
A Kinect v2 sensor can detect and track 25 skeletal joints. 
After the skeleton is detected and tracked, the key part of 

the method lies in selecting features to create feature vectors. 
Ofli and others have shown that during standing actions and 
walking, the right and left knees and the elbow are the most 
informative features of the human skeleton [49]. In addition, 
Uddin and others have shown that angles between shoulders, 
elbows, knees, and the crotch provide useful informative 
features for 3D human activity recognition [47]. Moreover, 
Thang and others have used angle pairs of shoulders, elbows, 
and knees. In the proposed approach, angle pairs of hipbones 
are also added. The selected angle pairs used in this study are 
shown in Figure 2.

The value of the angle between two different joints j1 and 
j2 can be calculated by distinguishing the locations of the two 
joints with respect to a reference joint r in 3D space. The 
formula is denoted as follows:

In this equation, rj⃗1 represents the distance between joint 
j1 and the reference joint r in 3D space. Similarly, rj⃗2 rep-
resents the distance between joint j2 and the reference joint 
r in 3D space. The dot between the vectors indicates the dot 
product. Lastly, ||rj1|| and ||rj2|| represent the lengths of these 
vectors, respectively.

3.2.2  |  Sliding Kernel
Because human activity occurs in the time domain, it can be 
considered as a two dimensional problem. It is thus neces-
sary to observe the angle patterns of each joint angle in the 

(1)aj1,j2
= cos−1

(
rj⃗1 ⋅rj⃗2

||rj1|| ⋅ ||rj2||

)
.

F I G U R E  1   Flowchart of the proposed method
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time domain to recognize an action. Therefore, storing angle 
swings in the time domain using the sliding kernel method is 
beneficial. Angle data of each joint in the time domain can be 
denoted as follows:

where af ,j is the angle value of a joint in the jth frame. The num-
ber of features obtained in each frame is equal to 8×n, where n 
represents the kernel size.

In this paper, the sliding kernel is achieved using a 
queue structure. In each frame, eight joint angles are ob-
tained by the Kinect camera and they are stored in the 
queue structure. Here the capacity of the queue structure is 
another parameter of the system, which denotes the kernel 
size. If the queue capacity is 16, then 16 × 8 = 128 fea-
tures are stored in the queue. Because the queue structure 
is a first‐in first‐out (FIFO) data structure, it behaves as a 
sliding kernel in the time domain. In our study, the kernel 
size (in other words the queue capacity) is set to 16, which 
yields optimum results with respect to time complexity and 
performance.

3.2.3  |  Discrete Haar Wavelet Transform 
(DWT)
Haar wavelets are square‐shaped functions developed to 
organize data using frequency. Data are transformed from 
the spatial domain to the frequency domain, and each 
component on the corresponding resolution scale is stored 
by wavelet transformation. The basic Haar function �(t), 
with scaling function �(t), is defined using the following 
relationships:

The functional relevance between the wavelet function 
and scaling function can be described as follows:

and

Haar wavelet transform basically consists of averaging 
and differencing. For an input dataset with 2n elements, the 
HWT simply takes the average of each pair of components of 
the dataset and places them in the first half of a new string 
(low‐pass band). The average differences between each pair 
of components compose the other half of the new string 
(high‐pass band). This process repeats itself until there are 
2n−1 detail coefficients and one final sum consisting of low‐
pass values. Assume that x is a vector with length N, and 
x= (x1, x2, … , xN), where N is a power of 2. The number of 
steps required is:

The calculation of low‐pass band coefficients lpk and 
high‐pass band coefficients hpk proceeds as follows:

and

This procedure is also reconstructive because:

and

In this paper, the number of elements for each input 
signal is 128, which means that the step number is 
log2 128=7. After determining the Haar coefficients of 
the feature vectors, averaging‐based dimension reduction 
is applied.

(2)af ,j ∈N∗, xf ,j ≤360,

(3)where f =1, … ,∞ and j=1, 2, … , 8,

(4)
k=

⎡
⎢⎢⎢⎣

a1,1 ⋯ a1,8

⋮ ⋱ ⋮

a16,1 ⋯ a16,8

⎤
⎥⎥⎥⎦
→ k

� =
�
a1,1, a1,2,… , a16,8

�

→

�
x0, x1,… , x127

�
,

(5)�(t)=

⎧⎪⎨⎪⎩

1 t∈ [0,0.5),

−1 t∈ [0.5,1),

0 otherwise,

(6)�
j

i
(t)=

√
2j�(2jt− i),

(7)j=0, 1, … ,∞ and i=0, 1, … , 2j−1,

(8)�(t)=

⎧
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1 t∈ [0,0.5),

−1 t∈ [0.5,1),

0 otherwise.

(9)�(t)=�(t)+�(2t−1)

(10)�(t)=�(t)−�(2t−1).

(11)�= log2 N.

(12)lpk =

(
x2k +x2k+1

)
2

for k=0, 1, … ,
N

2
−1

(13)hpk =

(
x2k −x2k+1

)
2
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N

2
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(14)
(
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+
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3.2.4  |  Dimension reduction with averaging
After 128 Haar coefficients are produced, the averaging‐
based dimension reduction method is conducted to decrease 
the computational cost and eliminate redundancy. The aver-
age of two likely HWT candidates in the low‐pass module 
or in the high‐pass module will correspond to new elements 
in the new set of vectors. For instance, the average of the 
first and second elements will correspond to the first index of 
the new vector, the average of the third and fourth elements 
will correspond to the second index of the new vector, and 
so on. The equation for reducing the dimensions is denoted 
as follows:

and

where f is the feature vector for each reduction. The first 
subscript of x represents the number of dimension steps, and 
the second subscript is the index number of a feature vector. 
Additionally, � represents the step number.

In this paper, we use averaging for dimension reduction 
in the frequency domain. After we obtain the Haar coeffi-
cients, we apply the averaging method to reduce the size of 
the frequency graph of the Haar coefficients. After dimen-
sion reduction in the frequency domain, we apply the inverse 
transform to obtain feature coefficients in the time domain. 
This is necessary to reduce the dimensions of the feature vec-
tors with minimal loss of information.

3.2.5  |  Proposed thresholding with 
inverse HWT
As mentioned in the Haar Wavelet Transform section, 
the original signal can be easily reconstructed by ap-
plying the reverse averaging and differencing operation 
without losing information. However, it is possible to 
obtain a higher degree of compression by setting a non‐
negative threshold value �. This method is called lossy 
compression. Using a threshold will make any low‐pass 
band elements correspond to zero if their magnitude in 
the transformed signal is less than or equal to the thresh-
old value. By this means, the number of zeros in the 
transformed signal will increase, which will provide a 
high level of compression. For lossless compression, the 
threshold value � is set to zero. If lossy compression is 
required or is advantageous, then approximations of the 
original signal are constructed. Setting the value of � re-
quires care, as there is a tradeoff between the threshold 
value and compressed signal quality. The conventional 
threshold equation is

and

where x represents any Haar coefficient located in the high‐pass 
band.

The proposed thresholding method provides a useful tech-
nique to enhance the signal quality while performing inverse 
HWT. The formulation is

where � is the mean of the Haar coefficients in both the low‐
pass and high‐pass bands.

3.2.6  |  Transformation of feature vectors
First, feature vector values contain the information of 
eight different joint angles. These values are stored (for 
16 frames) until 128 features are obtained. To retain the 
important information stored, data are evaluated in the fre-
quency domain. For time series evaluation, HWT is widely 
used in signal processing, because HWT compresses the 
data without losing important information (red signals in 
Figure 3). In the frequency domain, Haar coefficients are 
averaged for dimension reduction (green signals in Figure 
3). Thus, the important information is kept and redundancy 
will be eliminated. In other words, the power spectrum of 
each signal will be reduced, and this provides a low dy-
namic range evaluation of Haar coefficients. After dimen-
sion reduction, a novel thresholding method is proposed. 
In this method, the Haar coefficients below the mean of all 
Haar coefficients are replaced with the mean of all Haar co-
efficients, but the sign of each replaced coefficient is kept. 
Through the inverse HWT, the feature extraction process 
is performed (purple signals in Figure 3). In summary, a 
new feature vector contains the characteristics of the raw 
data, but at a different scale and shape. In Figure 3, purple 
signals represent the results of the thresholding methods 
combined with inverse HWT. Even though both methods 
eliminate redundancy and provide low dynamic range eval-
uation, it is clear that the proposed method creates more 
peaks and valleys in the data, which indicate more efficient 
classification performance.

(16)fn =

(
xn,2k +xn,2k+1

)
2

, for k=0, 1, … ,
N

2
−1

(17)n=1, 2, … , �,

(18)x∈ [1, N−1]

(19)T(𝜆, x)=

{
0 if |x|<𝜆,

x otherwise,

(20)x∈ [1, N−1],

(21)�= (lp0+hp0+hp1+…+hpN−2)∕N,

(22)T(𝜆, x)=

{
x if x>𝜇,

sign(x)𝜇 otherwise,
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4  |   EXPERIMENTAL RESULTS 
AND CONSIDERATIONS

4.1  |  Experimental environment and dataset
The dataset for this study was created by Kyungsung University, 
Department of Electronic Engineering. For implementation of 
the proposed HAR system, Microsoft Visual Studio 2013, C# 
with Microsoft Kinect SDK 2.0, Vitruvius, and the Accord.net 
machine learning framework are used. For comparisons with 
different parameters of k‐NN and other algorithms such as 
Random Forest (RF) and genetic algorithm (GA), Weka data 
mining software is used. Lastly, Python 3.6.4 with Tensorflow 
is also used for the LSTM network performance evaluation. 
This dataset contains information regarding 10 different people 
whose height, weight, and clothing are different. Each activity 
is recorded for each person (user) two times to construct the 
training set and one time to construct the test set. The reason 
is that test sequences include different angle variations of the 
same activities, which are used to evaluate the accuracy of the 
proposed system in real‐world conditions. Moreover, for k‐fold 
cross validation, training and test sequences were combined, 
and k was set to 10. Because each person performs an activity 
at a different pace, the number of instances for each activity is 
different. The number of instances for each activity used in the 
dataset is shown in Table 1.

For the preparation of the training and test sets, the 
Microsoft Kinect v2 sensor is placed at a height of 1.70 m. 
During the creation of the training set, a user is recorded in 
two directions, which are ±45° with respect to the camera. 
However, the users are recorded for the entire area between 
±45° and −45° while preparing the test set. The key motiva-
tion behind the use of test activity patterns not used for train-
ing is that the proposed method provides rotation invariance. 
The dataset setup is presented in Figure 4.

Finally, the dataset is composed of two activity primi-
tives, which are posture and motion. The list of primitives is 
given in Table 2 and images of each activity in the dataset are 
shown in Figure 5.

4.2  |  Comparison of different k‐NN  
parameters
As mentioned previously, the k‐NN algorithm is used as the 
classifier in this paper. The main reason for choosing k‐NN 
as the classifier is that k‐NN is a lazy learner. This means 
that the k‐NN algorithm does not model the data while train-
ing. However, it remembers the data during the test phase. 
Another reason is that k‐NN is quite effective in a large num-
ber of applications; however, as the number of dimensions 
increases, k‐NN performance deteriorates.

Because there are various parameters associated with 
k‐NN, a short explanation of which parameters are used for 

T A B L E  1   Number of instances used in the dataset for each 
activity

Activity

Train Test

Number of instances Number of instances

Standing 2018 848

Walking 2060 955

Eating 1728 926

Calling 1692 873

Lifting 2264 832

Handclapping 2224 859

Sitting 2183 969

Total 14 169 6262

F I G U R E  3   Thresholding comparison: (A) conventional method and (B) proposed method
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this study follows. First, because k‐NN looks for the nearest 
neighbor in a cluster by calculating the distance between at-
tributes, one of the main parameters is distance. There are 
various types of distance metrics, such as the Euclidean dis-
tance, Manhattan distance, or Minkowski distance. Each of 
these metrics has advantages and disadvantages, and select-
ing which to use largely depends on the dataset. In this study, 
the Euclidean distance was selected based on the analysis 
results discussed below.

After choosing the distance metric, assigning the value 
of k (the number of closest training examples to be con-
sidered as similar to a test sample) is the next task, and 
assigning the value of k also depends on the dataset. There 

are some ways to find the optimum k value, such as cross‐
validation and resampling. Assigning k is a critical task. A 
small k value will allow noise to have a higher influence 
on the data. In contrast, a large k value increases computa-
tional complexity and obviates the main philosophy behind 
k‐NN (attributes which are close to each other could have 
similar densities or classes). In the proposed study, the k 
value assigned is 1. To determine the best performance, the 
data were tested with different k values and different dis-
tance metrics. Performance results from this comparison 
are shown in Table 3.

4.3  |  Comparison of different classifiers
In this section, the comparison of different classifiers is 
presented. For this evaluation, k‐NN, RF, and LSTM net-
works are tested on the same dataset. The motivation for 
comparing k‐NN and RF is that there is a close relation-
ship between these two algorithms [50]. Simply stated, 
both algorithms can be viewed as weighted neighborhood 
schemes. They create models from training data to make 
predictions for new observations by checking the neighbor-
hoods, and formalize a weight function. RF also provides 
a variable ranking mechanism that can be used to select 
important variables. Because k‐NN is a nonparametric 
model, it is usually a good classifier for many situations 
in which the joint distribution is unknown or difficult to 
model parametrically. This is especially true for high‐di-
mension datasets.

However, there is some dissimilarity as well. For in-
stance, RF produces an in‐memory classification model 
which does not require database lookups, while k‐NN uses 
on‐the‐spot learning that requires extensive computations, 
which makes k‐NN inefficient for classifying large data-
bases. Apart from this, eager learners such as RF cannot 
easily model decision spaces with complicated decision 
boundaries; in contrast, k‐NN performs instance‐based 
learning which leads to accurate performance if a well‐tuned 
k‐NN model is used. Additionally, k‐NN is a lazy learning 
scheme, and only stores the input data during the training 
process; thereby, training is essentially spontaneous [51]. 
The parameters used for k‐NN were given in the previous 
section. For RF, the size of each bag was set to 100, and 
100 trees were used. Additionally, the number of folds for 
back fitting was set to 0 (no back fitting). In addition to 
these two algorithms, LSTM was included in this compar-
ison. The reason is that deep learning algorithms have be-
come very popular recently in the machine learning field, 
and they usually achieve higher accuracy rates compared to 
other classifiers. In this study, a many‐to‐one recurrent neu-
ral net (RNN) architecture with two LSTM cells was used. 
The number of hidden layers was set to 32, and the learn-
ing rate and lambda loss amount were set to 0.0015 and 

F I G U R E  4   Dataset setup for training and testing
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F I G U R E  5   HAR‐activity examples from dataset



      |  85İNCE et al.

0.0025, respectively. A comparison was also made between 
the feature vectors obtained by; (i) proposed method with 
proposed thresholding method, (ii) proposed method with 
conventional thresholding method, (iii) dimension reduced 
data with averaging method, and (iv) dimension reduced 
data with GA. The performances of these feature vectors 
using the k‐NN classifier are shown in Figure 6 based on 
confusion matrices. Briefly, a confusion matrix evaluates 
the quality of the predictions of a classifier on a given data-
set. The diagonal units mean the number of points for which 

the estimated labels represent true positives, while the off‐
diagonal elements are mislabeled by the classifier. Thus, 
the higher the diagonal values of the confusion matrix are, 
the better the accuracy. The comparison results of the three 
different classifiers with the four different feature vectors 
are presented in Table 4. As seen in Table 4, k‐NN achieves 
the best accuracy for this problem, and because it is a lazy 
learner and does not model the data during training, the 
speed of the algorithm is high. The accuracies of RF and 
LSTM are very similar for this dataset. Cross‐validation ex-
periments were also conducted with the same parameters, 
and the results are listed in Table 5.

LSTM was expected to achieve higher accuracy, but did 
not. The reason could be that neural networks are designed for 
high‐dimension datasets. Because the dataset used here has 
low dimension (seven classes), LSTM may have difficulties 
in constructing a proper model. In contrast, k‐NN can suffer 
from the curse of dimensionality. This means that although 
k‐NN is effective in a large number of cases, its accuracy de-
creases as the dimension (number of classes) increases. It is 
thus likely that the low number of classes used to represent 
the dataset allowed k‐NN to be slightly more accurate than 
LSTM.

In contrast, as a feature vector, the proposed threshold-
ing provides better results than conventional thresholding in 
all comparisons. Moreover, similar studies presented in the 
literature have produced various levels of performance. A 
Gaussian mixture‐based HMM for human daily activity rec-
ognition study [52] obtained 84% recall accuracy, whereas 
using a depth video sensor for indoor activity recognition 
achieved 90.33% accuracy [53]. In [54], the authors used 
spatiotemporal multi‐fused features from depth video and 
obtained a 94.1% accuracy rate. Other depth‐based studies 
[55‒57] reported recognition rates of 91.29%, 78.5%, and 
83.9%. In [58], an 89.1% recognition rate was achieved by 
using a combined support vector machine (SVM) and HMM 
architecture.

Metric k value Accuracy (%) F‐1 (%) Precision (%) Recall (%)

Euclidean distance 1 86.1 85.7 86.0 86.1

3 85.6 85.1 85.4 85.6

5 84.9 84.3 84.8 84.9

9 84.2 83.6 84.0 84.2

Manhattan distance 1 85.9 85.6 85.8 85.9

3 85.6 85.1 85.4 85.6

5 84.8 84.2 84.6 84.8

9 84.1 83.6 84.0 84.2

Minkowski distance 1 86.1 85.7 86.0 86.1

3 85.6 85.1 85.4 85.6

5 84.9 84.3 84.8 84.9

9 84.2 83.6 84.0 84.2

T A B L E  3   Performance using different 
k values and metrics

F I G U R E  6   Comparison of feature vectors generated by (A) 
proposed method with proposed thresholding method; (B) proposed 
method with conventional thresholding method; (C) dimension 
reduced data with averaging method; and (D) dimension reduced data 
with GA
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5  |   CONCLUSIONS

Recognition of human activity has become one of the 
most popular research topics in the machine learning field. 
Generally, proposed approaches focus on heterogeneous 
and/or large scale data. The creation of a HAR system is a 
nontrivial problem based on rotation and scale variations, 
complex camera motion, large interclass variations, and data 
margin issues.

In this study, a new method is proposed for human activity 
recognition using angle patterns between skeletal joints. The 
reason behind this approach is that angles are scale and rota-
tion invariant features. Because human activity occurs in the 
time domain, these angle values are stored using the sliding 
kernel method. Stored kernel elements are then evaluated in 
the frequency domain. For time series evaluation, we applied 
HWT to compress the data without losing information. By 

conversion to the frequency domain, the number of Haar co-
efficients was reduced from 128 to 16 to lower the compu-
tational cost. Using this method, the important information 
is retained and redundancy is eliminated. After dimension 
reduction, a novel thresholding method for feature extraction 
is proposed. Feature extraction is accomplished through the 
inverse HWT. Then, the k‐NN algorithm is used to recognize 
human activities. Various classifiers and different feature 
vectors are compared as a cross‐check to evaluate whether 
the proposed method is a good choice for human activity 
recognition. According to the experimental results, the best 
accuracy achieved by the proposed method was 86.1%. In 
summary, the various steps necessary to construct HAR sys-
tems have been reviewed. The proposed automatic human ac-
tivity recognition system using a RGB‐depth camera appears 
to be suitable for video surveillance systems and in elderly 
care. A major contribution of the proposed method involves 

T A B L E  4   Results of different classifiers with different feature vectors

Classifier Feature vector Accuracy (%) F‐1 (%) Precision (%)
Recall 
(%)

k‐NN k = 1 Proposed method with proposed thresholding 86.1 85.7 86.0 86.1

Proposed method with conventional thresholding 84.1 83.7 83.6 84.1

Dimension reduced data with averaging 81.0 80.4 81.6 81.0

Dimension reduced data with GA 81.0 80.5 83.2 81.0

Random Forest Proposed method with proposed thresholding 82.6 82.4 82.4 82.6

Proposed method with conventional thresholding 80.6 80.3 80.3 80.6

Dimension reduced data with averaging 80.8 80.3 81.4 80.8

Dimension reduced data with GA 82.9 82.2 85.6 82.9

LSTM Proposed method with proposed thresholding 82.2 81.9 82.6 82.2

Proposed method with conventional thresholding 78.7 78.1 78.1 78.7

Dimension reduced data with averaging 45.5 42.7 50.4 45.5

Dimension reduced data with GA 76.3 75.6 77.8 76.3

T A B L E  5   Cross‐validation results of different classifiers with different feature vectors

Classifier Feature Vector Accuracy (%) F‐1 (%) Precision (%) Recall (%)

k‐NN k = 1 Proposed method with proposed thresholding 97.8 97.8 97.8 97.8

Proposed method with conventional thresholding 93.2 93.2 93.3 93.2

Dimension reduced data with averaging 86.6 86.5 86.7 86.6

Dimension reduced data with GA 99.5 99.5 99.5 99.5

Random Forest Proposed method with proposed thresholding 98.1 98.1 98.1 98.1

Proposed method with conventional thresholding 93.9 94.0 94.0 93.9

Dimension reduced data with averaging 89.7 89.7 89.7 89.7

Dimension reduced data with GA 99.9 99.9 99.9 99.9

LSTM Proposed method with proposed thresholding 99.1 99.2 99.2 90.8

Proposed method with conventional thresholding 94.0 94.1 94.1 94.0

Dimension reduced data with averaging 68.2 72.1 76.6 68.2

Dimension reduced data with GA 99.9 99.9 99.9 99.9
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reducing the data dimension in the frequency domain so that 
analysis can be conducted in a low dynamic range. Extensive 
testing results have verified that the proposed method per-
formed adequately.

However, there are some disadvantages associated with 
the proposed algorithm. First, incorrect skeleton detection 
causes incorrect angle calculations and thus automatically 
misleads the classification. Because the system is trained 
based on activities in two directions at different angles and 
positions, some confusion can occur when attempting to rec-
ognize an activity because of possible similarities in the an-
gles and positions of different activities. Finally, considering 
price and comfort, a simple RGB camera rather than a RGB‐
depth camera could be considered.

For future work, evaluating the performance using a sim-
ple RGB camera could extend the application areas of the 
proposed HAR system.
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