
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 1, Jan. 2017                                              321 
Copyright ⓒ2017 KSII 

Human Activity Recognition in Smart 
Homes Based on a Difference of Convex 

Programming Problem 
 

Vahid Ghasemi1, Ali A. Pouyan1, and Mohsen Sharifi2 
1School of Computer and IT Engineering, Shahrood University of Technology 

Shahrood, Semnan - Iran 
[e-mail: vghasemi@shahroodut.ac.ir, apouyan@shahroodut.ac.ir] 

2 School of Computer Engineering, Iran University of Science and Technology 
Tehran - Iran 

[e-mail: msharifi@iust.ac.ir] 
*Corresponding author: Vahid Ghasemi 

 
Received March 28, 2016; revised October 14, 2016; accepted November 3, 2016;  

published January 31, 2017 
 

 

Abstract 
 

Smart homes are the new generation of homes where pervasive computing is employed to 
make the lives of the residents more convenient. Human activity recognition (HAR) is a 
fundamental task in these environments. Since critical decisions will be made based on HAR 
results, accurate recognition of human activities with low uncertainty is of crucial importance. 
In this paper, a novel HAR method based on a difference of convex programming (DCP) 
problem is represented, which manages to handle uncertainty. For this purpose, given an input 
sensor data stream, a primary belief in each activity is calculated for the sensor events. Since 
the primary beliefs are calculated based on some abstractions, they naturally bear an amount of 
uncertainty. To mitigate the effect of the uncertainty, a DCP problem is defined and solved to 
yield secondary beliefs. In this procedure, the uncertainty stemming from a sensor event is 
alleviated by its neighboring sensor events in the input stream. The final activity inference is 
based on the secondary beliefs. The proposed method is evaluated using a well-known and 
publicly available dataset. It is compared to four HAR schemes, which are based on temporal 
probabilistic graphical models, and a convex optimization-based HAR procedure, as 
benchmarks. The proposed method outperforms the benchmarks, having an acceptable 
accuracy of 82.61%, and an average F-measure of 82.3%. 
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1. Introduction 

With the rapid population aging in communities, the smart homes, as ambient assisted 
living (AAL) environments, have attracted lots of attention. Smart homes can be regarded as 
the new generations of homes in which pervasive (or ubiquitous) computing is incorporated to 
make the lives of people more comfortable. The general goal of AAL is to hire ambient 
intelligence (AmI) solutions and pervasive computing technologies to assist individuals with 
specific needs (e.g. elderly people). However, human activity recognition (HAR) is of crucial 
importance in AAL environments; because, the health and behavioral status of the occupants 
are monitored by means of HAR, and accordingly, essential services are provided proactively. 

Occupants’ data can be collected by various technologies in smart homes. Wireless sensing 
technologies provide efficient tools for capturing users’ physical data, particularly in indoor 
environments like smart homes [1-4]. They can provide non-intrusive, privacy friendly, and 
easy to install solutions, to in-home monitoring. The most common sensors in smart homes 
include: environmental sensors (e.g. luminosity, temperature,  etc.), home usage sensors (e.g. 
electric current, RFID tags, switch sensors, etc.), user location sensors (e.g. indoor positioning 
systems), and medical sensors (e.g. body temperature, blood pressure, etc.) [2]. The collected 
data will be further interpreted as the residents’ activities, and accordingly, essential aids will 
be provided. 

Interpreting sensors’ data streams as activities, that could have been carried out in various 
scenarios (e.g. sequential, interleaved, concurrent), is still a key research challenge [3, 4]. This 
has long been investigated in the literature. However, many research works are based on 
restrictive assumptions that achieve activity inference using local pieces of evidence (e.g. 
using the data of a sliding window to infer activities) [5-9]. Despite being real-time, they are 
inaccurate when applied to practical real-world scenarios. Such inaccuracies can have serious 
unsafe or detrimental effects on the residents. For instance, if the activity “take pill" is 
recognized mistakenly based on local pieces of evidence, the system will not warn the resident 
to take his (or her) pills, and an irrecoverable incident may take place. Therefore, an accurate 
inference is of predominant importance in such environments. 

As another issue, managing uncertainty is of crucial importance for HAR. The 
uncertainties stemming from multiple sources are the main reasons of insufficient 
performance in lots of HAR mechanisms [10]. Hence, one of the principal concerns of HAR 
research is to manage or minimize the uncertainties arisen throughout the HAR process [10]. 
There are two types of uncertainties: type-𝐴 and type-𝐵  [10, 11]. The source of type-𝐴 
uncertainty is the random nature of measurements, which is usually modeled by probability 
distributions. In contrast, the source of type-𝐵 uncertainty is generally, the lack of knowledge 
in the measurements and is usually modeled experimentally. In the context of HAR, the 
random nature of human activities is considered as the source of type-𝐴 uncertainty, while 
sensor technologies and incomplete HAR techniques can be the sources of type-𝐵 uncertainty 
[10]. For example, in [12], type-𝐵 uncertainty is considered to stem from sensor hardware 
errors and is indicated by fixed real values as discounting factors in the Dempster-Shafer 
theory for sensor data fusion. Whilst many HAR methods, such as temporal probabilistic 
graphical models, take type- 𝐴  uncertainty into account, they don’t consider type- 𝐵 
uncertainty. Henceforth, we use the term uncertainty to refer to type-𝐵 uncertainty unless 
type-𝐴 is explicitly pointed out. 

The main contribution of this paper is to represent a novel solution for HAR, which can 
achieve two goals: 1- performing a global inference, and 2- managing uncertainty. The 
proposed method is based on minimizing a novel objective function in the form of a difference 
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of convex programming (DCP) problem. The DCP problem is solved by taking all pieces of 
evidence from the input stream into account. Therefore, the inference is no more local. 
Furthermore, the proposed method is capable of handling uncertainty by defining appropriate 
constraints for the DCP problem. To achieve these goals, given a sensor data stream, a primary 
belief in each activity is calculated for the sensor events. A primary belief in an activity is 
defined as the weighted posterior probability of that activity. The primary beliefs compose 
primary belief vectors (PBVs) for the sensor events. Since the PBVs are calculated based on 
some abstractions, they bear an amount of noise that would induce uncertainty. We consider 
the uncertainty of the belief vectors as their entropy. To mitigate the effect of uncertainty, 
secondary belief vectors (SBVs) are calculated out of PBVs by solving the DCP problem. The 
DCP problem takes the PBVs as input, and yields the SBVs as its solution by satisfying the 
following constraints (to be elaborated in section  5.2): 

1- The secondary belief vectors are not far from the confident primary belief vectors. 
2- The number of segments of activities in the input sensor data stream is limited. 
3- The uncertainty of the secondary belief vectors should be minimized. 

The DCP problem is solved by the standard convex-concave procedure (CCP) algorithm 
[13]. Afterwards, the activities are inferred based upon the values of the secondary beliefs. A 
well-known and publicly available dataset is used to evaluate the proposed method. Two 
experiments are carried out for this purpose. In the first experiment, the proposed method is 
compared to four widely adopted HAR schemes, which are based on temporal probabilistic 
graphical models. In the second experiment, a convex optimization-based sequence 
classification scheme is implemented in which the concept of uncertainty is not considered. 
The results show that the proposed method has an acceptable performance in comparison to 
the benchmarks. 

The remainder of the paper is organized as follows. In  the following subsection, we discuss 
the motivations and the concept of uncertainty; in section  2, the related works are reviewed; 
section  3 represents some notations and the format of sensor data streams; section  4 describes 
the activity recognition problem and its characteristics; the proposed method is elaborated in 
section  5 and its subsections; the experiments and simulation results are taken in section  6; 
finally, section  7 concludes the paper. 

1.1. Motivations and the Concept of Uncertainty 

Let 𝑠 denote a sensor event which is recorded in the smart environment. This event can be 
the triggering of a motion sensor, switch sensor, etc. Naturally, the observation of 𝑠 will 
induce an amount of belief in each possible activity. We call this, the primary belief of 𝑠 in the 
activities. Given 𝑠, we define the primary belief in an activity as its posterior probability 
divided by the flatness of the activitie’s posterior distribution. In other words, the primary 
beliefs can be thought as the weighted posterior probabilities of the activities. With 𝑛 possible 
activities, the primary beliefs of 𝑠 yield an 𝑛-ary vector, which is called the primary belief 
vector (PBV) of 𝑠. The 𝑖’th element of this vector denotes the primary belief of 𝑠 in the 𝑖’th 
activity. 

Having observed a sensor event 𝑠, one paradigm for inference is to select the activity in 
which 𝑠 has the highest primary belief. But there are situations where there exist more than 
one activity in which 𝑠 has significant primary beliefs. The small differences between the 
significant primary beliefs can be due to some sources of uncertainty such as modeling 
inefficacies, sensor hardware errors, misplacement of sensors, etc. [10]. In such cases the PBV 
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of 𝑠 is said to be uncertain.  For instance, from the dataset of [1], with 8 possible activities, it 
turns out that the PBV of the sensor event 𝑀07𝑂𝑁  is 
𝑏𝑀07𝑂𝑁 ≈ (0.02,0.18,0.17,0.11,0.11,0.07,0.17,0.18). However, if sensor event 𝑀07𝑂𝑁 is 
observed, it can not be certainly inferred that which one of activities 2,3,7, or 8 is taking place; 
because their corresponding beliefs are very similar. Therefore, the belief vector 𝑏𝑀07𝑂𝑁 is 
uncertain. In these situations the entropy of the belief vector will take a high value. Therefore, 
we consider entropy as a measure of uncertainty for a belief vector. 

To cope with the problem of uncertain belief vectors, we propose to take into account the 
effect of the adjacent sensor events. That is, the high uncertainty of a PBV should be frustrated 
by the belief vectors of the neighboring sensor events in the input stream which have low 
uncertainties. The resulting beliefs are called secondary beliefs. Similar to PBVs, the 
secondary beliefs compose secondary belief vectors (SBVs) for each sensor event. The final 
inference is based on the SBVs. In section  5.2, we first define the uncertainty of a belief vector 
as its entropy formally, and then, represent a solution to calculate the SBVs based on a DCP 
problem.  

2. Related Works 
HAR methods can be classified into three main categories based on their activity modeling 

schemes: data-driven, knowledge-driven and hybrid methods [3]. Data-driven HAR is based 
on learning activity models from pre-existent data, using data mining and machine learning 
techniques. In knowledge-driven schemes, activity models are directly acquired by exploiting 
rich prior knowledge from the domain of interest, using knowledge engineering and 
management technologies. In hybrid methods, a combination of the previous techniques is 
used. All of these approaches have pros and cons. For instance, data-driven approaches can 
model the probabilistic nature and temporal information of activities, while they suffer from 
the problems of scalability and reusability. Knowledge-driven methods have the advantages of 
being semantically clear and highly reusable, while they suffer from static activity models and 
possible incomplete or inaccurate knowledge. Emerging hybrid HAR schemes, such as the 
approaches of [14, 15], aim at taking the advantages of the previous two cases. However, these 
methods and also the knowledge driven approaches are generally weak at managing 
uncertainty [3, 15]. 

Based on the types of the sensors, HAR methods can also be divided into vision-based and 
sensor-based techniques. Sensor-based techniques can in turn be further divided into two 
categories of wearable sensor-based, and dense sensing-based methods [3, 4]. In dense 
sensing-based methods, sensors are attached to the environmental objects, while in the 
wearable sensor-based schemes, sensors are positioned on the human body. For the purpose of 
this paper, data-driven dense sensing-based HAR is considered. 

Some HAR schemes try to infer the ongoing activities based on local pieces of evidence 
(e.g. the evidence from a limited sliding window). However, they usually suffer from not 
being general enough to cover some common human activity scenarios in realistic 
environments. In [5], multiple sliding window-based HAR schemes (time-based and 
sensor-based windowing) are implemented. In these schemes, only the features of the current 
window along with the probability of activities from the previous window are considered to 
infer an activity for a sensor event. In [6], a dynamic sensor stream segmentation method is 
presented. In this method, an arriving sensor event is added to the past segments, if it has a 
time correlation with their first and last sensor events, and value correlation with their last 
sensor event. Otherwise, a new segment will be initiated by the new sensor event. Finally, 
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some typical classifiers (e.g. naïve Bayes classifier, hidden Markov models, etc.) are hired to 
classify the segmented sequences. In [7], a method for sensor event segmentation and 
classification is introduced. In this method, a sensor event is added to a previously initiated 
segment based on the results of an activity inference engine, and the Jaro-Winkler distance 
between the sequence of the current segment and the training set. Otherwise, a new segment is 
initiated by the incoming sensor event. In [8] (and similarly in [9]), a support vector machine 
(SVM) is used to classify the features that have been computed for fixed-length time frames, 
into daily activities. All the mentioned methods suffer from common shortcomings that stem 
from local inference. For example, even though the subsequent pieces of evidence would be 
available, the dependency of the current sensor events with them is not considered. 

In contrast to the previous methods, there are other HAR schemes, which try to achieve a 
global inference by considering the shreds of evidence from all over the input stream. Among 
these methods, temporal probabilistic graphical models provide formal mechanisms for 
learning activity models and inference. These models use a template graph structure to 
represent the dependencies among observed random variables (sensor readings) and unknown 
variables (activity labels). Given a sequence of observations, the template graph is unrolled 
and the most likely sequence of unknown variables is estimated, using a formal inference 
method (e.g. Viterbi algorithm) [16, 17]. Various types of graphical models exist based on the 
characteristics of the template graph and the unrolling rules. Dynamic Bayesian networks 
(DBNs) [18, 19], hidden Markov models (HMMs) [1, 20, 21], hidden semi-Markov models 
(HSMMs) [22], coupled HMMs (CHMMs) [23, 24], conditional random fields (CRFs) [20, 25, 
26], skip-chain CRFs (SCCRFs) [20, 27], factorial CRFs (FCRFs) [24], latent dynamic CRFs 
(LDCRFs) [28], and some other variants of such models, are instances that have been used for 
HAR. 

There are also some HAR approaches that achieve a global inference based on frequent 
sequential pattern mining. Generally, these methods try to find frequent patterns throughout 
the sensor data streams, for further interpretation as activities by their subsequent processes. 
The approaches of [29-31] are instances of such works. In [29], the concept of emerging 
patterns is introduced for HAR, which is based on the item-set mining methods. In [30], a 
greedy search for graph-based pattern discovery is performed in an unsupervised manner to 
find patterns that best compress the input dataset. Then the patterns are clustered into more 
abstract sets. Afterwards, a sensor-based windowing scheme is used to classify the cluster 
members when they appear in the input stream. The idea of compression is somehow similarly 
used in the approach of [31], to cluster the unlabeled sequential sensor data into different 
activity patterns, based on the LZW (Lempel–Ziv–Welch) compression algorithm. Some other 
instances include the works of [32, 33]. 

In spite of the huge body of works for HAR, most of the state-of-the-art HAR technologies 
suffer from neglecting uncertainty management as their main concern [10]. The HAR methods 
discussed above are instances of such works. Among data-driven HAR schemes, the approach 
of [34] manages the uncertainty of observations at the decision level. This is achieved through 
the verification of assigned labels, while utilizing the environment interactive sensors for the 
recognition of general activities. However, this approach is designed for the classification of 
pre-segmented activities. There are also some knowledge-driven methods that deal with 
uncertainty. The works of [12, 35-37] are instances of such methods. 

In this paper, a novel data-driven HAR approach is represented, in which the pieces of 
evidence from all over the input stream are considered for inference. Therefore, the inference 
is no more local. Furthermore, the proposed method is capable of mitigating the effect of 
uncertainty in inference. These goals have been achieved by a novel formulation of HAR as a 
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DCP problem. 

3. Sensor Data Stream and Some Notations 
The data of users’ activities are gathered by various types of sensors in the environment. 

Each sensor is assigned a unique identifier (ID). A sensor event is considered as the 
combination of the triggered sensor ID, followed by its value. The domain of sensor values can 
be either continuous (e.g. temperature or humidity sensors), or discrete (e.g. switch sensors or 
RFID tags). In the case of continuous sensors, a partitioning method [38] can be used for 
discretization. Therefore, we can assume that all the sensors are discrete-valued. The domain 
of sensor 𝑖 is denoted by 𝐷𝑖. Table 1 shows an example of the sensors’ IDs, types, domains, 
and their possible events. Note that sensor “T03” is continuous and its domain is divided into 
three intervals, numbered as 1, 2, and 3. 

 A sensor data stream (or sensor event stream) is the sequence of sensor events, ordered 
non-decreasingly by their occurrence time. A sensor data stream of length 𝑇 is denoted by 
𝑥1:𝑇 = 𝑥1, … , 𝑥𝑡 , … 𝑥𝑇, where 𝑥𝑡  is an individual sensor event. Fig. 1 shows a sensor data 
stream, extracted from the dataset of [1]. In a labeled sensor data stream, sensor events are 
labeled by the IDs of activities too.  

 In the following sections, some common notations are used as follows. The number of 
activities and the set of all possible sensor events are denoted by 𝑛 and 𝑆 , respectively. 
𝑥1:𝑇 = 𝑥1, … , 𝑥𝑡 , … 𝑥𝑇 stands for a sensor data stream of length 𝑇, 𝑥𝑖∈𝑥1:𝑇  is the 𝑖’th sensor 
event, and 𝑙𝑖 ∈ {1, … ,𝑛} is the ID of the inferred activity for 𝑥𝑖. The set of activities of daily 
life (ADLs) is denoted by 𝒜 = {𝑎1, … ,𝑎𝑛}, and 𝑎𝑗∈𝒜 is the label of the 𝑗’th activity. Also, 
the vectors and matrixes are depicted by bold letters. 

Table 1.An example of sensor IDs, types, domains, and sensor events from the dataset of [1]. 

ID Sensor Type Sensor Domain Sensor Events 

M15 Motion (Discrete) 𝐷𝑀01 = {"ON", "𝑂𝐹𝐹"} M01_ON, M01_OFF 

T03 Temperature(Continuous) 𝐷𝑇01 = {1,2,3} T03_1, T03_2, T03_3 

D07 Switch Sensor (Discrete) 𝐷𝐷07 = {"CLOSE", "𝑂𝑃𝐸𝑁"} D07_CLOSE, D07_OPEN 

    

Fig. 1. An example of a sensor data stream from 2008-07-29 12:31:40 to 2008-07-29 12:32:00 
in the dataset of [1]. Vertical bars are sensor events, and horizontal axis is the timeline. 
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4.  Activity Recognition Problem 
The main focus of this work is the task of supervised data-driven human activity 

recognition (HAR). This can be defined as follows: 
Definition 1. Let 𝒜 = {𝑎1, … , 𝑎𝑛} denote a known set of 𝑛  ADLs, 𝔇 = �𝑥1:𝑇𝑖

𝑖 �𝑥1:𝑇𝑖
𝑖 =

𝑥1𝑖 , … , 𝑥𝑇𝑖
𝑖 ,𝑇𝒊∈ℕ, 𝑖 = 1, … , 𝐿} denote a training dataset of 𝐿 labeled sensor data streams (𝑖 and 

𝑇𝒊 are the index, and length of the 𝑖’th sensor data stream in 𝔇, respectively),  and 𝑥1:𝑇 =
𝑥1, … , 𝑥𝑇 stand for a novel observed sensor data stream of length 𝑇. The objective of HAR is to 
train a model based on 𝔇, that can infer a subset of 𝒜, as the label of each sensor event 
𝑥𝑡∈ 𝑥1:𝑇 , 𝑡 = 1, … ,𝑇. 

Basically, the activities can be carried out in three main forms: sequential, interleaved, and 
concurrent [27]. In sequential style, an activity starts after the previous one is finished. For 
example, one starts “washing the dishes”, finishes it, and then goes to “watch TV” (no overlap 
between sensor events happens). In interleaved fashion, two or more activities proceed 
simultaneously but each sensor event pertains to a single activity (has a single label), and no 
overlapping sensor event exists. For example, one starts “washing the dishes”, stops it in the 
middle, goes to “answer the phone”, and again returns to “washing the dishes”. In concurrent 
mode, two or more activities progress simultaneously and there are overlapping sensor events 
too. For instance, one enters the living room and turns on the light, then starts “listening to 
music” and “writing a postcard” simultaneously. In this scenario, the two activities are 
accomplished simultaneously, and the sensor event of “turning on the light” pertains to both 
activities (it will have two labels). Fig. 2 shows these scenarios for two activities. The 
recognition of sequential and interleaved activities (i.e. single labeled sensor events) is the 
main focus of this paper. The proposed method is capable of recognizing such patterns 
effectively. 

5. The Proposed Method 
The proposed method comprises train and test phases. An overall view of these phases is 

represented in the flowchart of Fig. 3, and also, the pseudo codes of Table 2 and Table 3. The 
flowchart along with the corresponding pseudo codes, are illustrated in the following. 
Afterwards, the main components of the proposed method, i.e. the calculation of PBVs, and 
the formulation of the DCP problem, are illustrated in detail in the following two subsections. 

 

 

 

Fig. 2. Three types of activity executions. The vertical bars are sensor events, and the horizontal axis 
is the timeline. 
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Train phase: The pseudo code of this phase is taken in Table 2. In this phase, at first, the 
domain of every continuous sensor is discretized into a number of intervals, using the 
entropy-based approach of [38] (function 𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛). Each interval is assigned a unique 
ID. Every time that a continuous sensor is triggered, it takes the ID of the discretized interval 
that encompasses its sensed value. The set of discretized intervals of all sensors is shown by 𝐼 
for simplicity. After this preprocessing step, an 𝒏-ary PBV is calculated for each possible 
sensor event (function 𝐶𝑜𝑚𝑝𝑢𝑡𝑒_𝑃𝐵𝑉𝑠). The computations of the PBVs are elaborated in 
section  5.1. The set of PBVs is shown by 𝐸. It should be noted that the calculation of 𝐸 is 
feasible, since the number of installed sensors and their maximum number of discrete values 
are limited. Afterwards, the parameters of the DCP problem which was described in section  1, 
are calculated (function 𝐺𝑟𝑖𝑑_𝑆𝑒𝑎𝑟𝑐ℎ). The DCP problem takes a sequence of PBVs as input, 
and calculates a sequence of SBVs, which can be used to classify the input stream (to be 
described in section  5.2). To calculate the regularization parameters of the DCP problem, 
namely λ and γ, a grid search is performed to obtain the values that maximize the classification 
performance on the training set. Totally, the outputs of the training phase can be summarized 
as sets 𝐼, 𝐸, and parameters λ, and γ. 

 Test phase: The pseudo code of this phase is depicted in Table 3. In this phase, firstly the 
novel input stream of sensor events 𝑥1:𝑇 = 𝑥1, … , 𝑥𝑇, is discretized using set 𝐼, as described in 
the training phase (function 𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑖𝑧𝑒 ). Then, a sequence of PBVs, namely 𝑩 =
[𝒃𝟏, … ,𝒃𝑻]𝑻, is extracted for 𝑥1:𝑇 using set 𝐸 (function 𝐸𝑥𝑡𝑟𝑎𝑐𝑡_𝑃𝐵𝑉). Afterwards, the DCP 
problem is solved for the input sequence 𝑩, by means of the CCP algorithm [13] (function 
𝑆𝑜𝑙𝑣𝑒_𝑊𝑖𝑡ℎ_𝐶𝐶𝑃), and a sequence of SBVs, namely 𝑴 = [𝐌𝟏, … ,𝐌𝐓]𝑻, is obtained (this 
process is described in section  5.2). Finally, the label of each sensor event 𝑥𝑖∈𝑥1:𝑇  is inferred 
by equation 𝑙𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑗(𝑀𝑖,𝑗), where 𝑀𝑖 ,𝑗 is the j’th element of 𝐌𝐢. 

Fig. 3. The flowchart of the proposed method. (Only permanent data, processes, and input data are 
depicted for simplicity). 
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5.1. Primary Belief Vectors (PBVs) 

Having 𝑛  activities, and a set of total sensor events 𝑆 , an 𝑛 -ary feature vector 𝒃𝒊 =
(𝑏𝑖,1, … , 𝑏𝑖,𝑗 , … , 𝑏𝑖,𝑛) is calculated for each sensor event 𝑥𝑖∈ 𝑆 (𝑖 = 1, … , |𝑆|), where 𝑏𝑖,𝑗 ≥ 0 
is the belief of sensor event 𝑥𝑖 in activity 𝑎𝑗, and ∑ 𝑏𝑖,𝑗𝑛

𝑗=1 = 1. 𝒃𝒊 is the PBV of sensor event 
𝑥𝑖. We define the primary beliefs, as functions of posterior probability of the underlying  
activity and its flatness, as follows. 

  Table 2. The pseudo codes of the train phase. 
1.  Input 
2.      Annotated training set: 𝔇 = �𝑥1:𝑇𝑖

𝑖 �𝑖 = 1, … ,𝐿} 
3.      Formulated DCP problem (equation (7)): 𝑃 
4.      Maximum and minimum of λ, and γ : 𝑀𝑎𝑥λ ,𝑀𝑖𝑛λ ,𝑀𝑎𝑥γ,𝑀𝑖𝑛γ 
5.  Output 
6.  Set of possible PBVs: 𝐸 
7.  Set of discrete intervals: 𝐼 
8.      Regularization parameters: λ, γ 
9.  Variables 

10.      Discretized training set: 𝔇′ 
11.  Body 
12.      [𝐼,𝔇′] = 𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝔇) 
13.      𝐸 = 𝐶𝑜𝑚𝑝𝑢𝑡𝑒_𝑃𝐵𝑉𝑠(𝔇′) 
14.      [λ, γ] = 𝐺𝑟𝑖𝑑_𝑆𝑒𝑎𝑟𝑐ℎ(𝑃,𝐸,𝔇′ ,𝑀𝑎𝑥λ,𝑀𝑖𝑛λ,𝑀𝑎𝑥γ,𝑀𝑖𝑛γ) 
15.  End 

  
   Table 3. The pseudo codes of the test phase. 

1.  Input 
2.      Input sensor data stream: 𝑥1:𝑇 = 𝑥1, … , 𝑥𝑇  
3.      Set of discretized Intervals: 𝐼 
4.      Set of PBVs: E 
5.      Formulated DCP problem (equation (7)): 𝑃 
6.      DCP regularization parameters: λ,γ 
7.  Output 
8.      Sequence of inferred activity IDs: 𝑙1:𝑇 = 𝑙1, … , 𝑙𝑇  
9.  Variables 

10.      Matrix of PBVs: 𝑩∈ℝ𝑇×𝑛   //𝑖’th row (i.e. 𝑩𝒊) is the 𝑖’th PBV 
11.      Matrix of SBVs: 𝑴∈ℝ𝑇×𝑛   //𝑖’th row (i.e. 𝑴𝒊) is the 𝑖’th SBV 
12.  Body 
13.      For 𝑖 = 1 𝑡𝑜 𝑇 
14.          If 𝑥𝑖 is continuous 
15.              𝑥𝑖 = 𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑖𝑧𝑒(𝑥𝑖 , 𝐼)  
16.          End  
17.          𝑩𝒊 =  𝐸𝑥𝑡𝑟𝑎𝑐𝑡_𝑃𝐵𝑉(𝑥𝑖 ,𝐸) 
18.      End 
19.      𝑴 = 𝑆𝑜𝑙𝑣𝑒_𝑊𝑖𝑡ℎ_𝐶𝐶𝑃(𝑃,𝐵, λ, γ) 
20.      For 𝑖 = 1 𝑡𝑜 𝑇 
21.          𝑙𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑗∈{1,…,𝑛}(𝑀𝑖,𝑗) 
22.      End 
23.  End 
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Intuitively the belief 𝑏𝑖,𝑗 , is considered directly proportional to the posterior probability of 
activity 𝑎𝑗, given sensor event 𝑥𝑖. This is shown as  

𝑏𝑖,𝑗∝ 𝑝�𝐴 = 𝑎𝑗�𝑋 = 𝑥𝑖� (1) 

, where 𝐴  and 𝑋  are the variables that take the IDs of an activity and a sensor event, 
respectively. 

In a smart environment, the values of 𝑝�𝐴 = 𝑎𝑗�𝑋� are expected to be high for a limited 
number of sensor events that are related to activity 𝑎𝑗, and low for the others; because, each 
activity often deals with a limited number of repetitive appliances, and in each occurrence, 
triggers approximately the same subset of sensor events. Therefore, 𝑝�𝐴 = 𝑎𝑗�𝑋� is expected 
not to be highly flat. Hence, we make the following assumption. 

Assumption 1. Having the above-mentioned notations, it is expected that 𝑓(𝑋) =
𝑝�𝐴 = 𝑎𝑗�𝑋�, should not be highly flat in a smart environment.  

Similar to the flatness of a probability distribution function (PDF), which can be calculated 
by its entropy [39], we calculate the flatness of 𝑝�𝐴 = 𝑎𝑗�𝑋� after normalizing it, as  

𝑅𝑗 =  −�(𝑝̅�𝐴 = 𝑎𝑗�𝑋 = 𝑥𝑘� × log �𝑝̅�𝐴 = 𝑎𝑗�𝑋 = 𝑥𝑘��)
|𝑆|

𝑘=1

 (2) 

, where 𝑅𝑗 ≥ 0 is the flatness of 𝑝�𝐴 = 𝑎𝑗�𝑋�, and  𝑝̅�𝐴 = 𝑎𝑗�𝑋 = 𝑥𝑘� =
𝑝�𝐴=𝑎𝑗�𝑋=𝑥𝑘�

∑ 𝑝�𝐴=𝑎𝑗�𝑋=𝑥𝑘′�
|𝑆|
𝑘′=1

.  

The more flat 𝑝�𝐴 = 𝑎𝑗�𝑋� is, the higher value 𝑅𝑗  will take. 𝑅𝑗  takes the maximum value, 
if the values of 𝑝�𝐴 = 𝑎𝑗�𝑋� are the same for all possible sensor readings (fully flat). On the 
other extent, it will be minimum (zero) if the value of 𝑝�𝐴 = 𝑎𝑗�𝑋� equals to one for a single 
sensor reading, and zero for the others (fully peaked). Regarding Assumption 1, the belief 𝑏𝑖,𝑗  
is defined inversely proportional to the flatness 𝑅𝑗 , to give more weight to the posterior 
probabilities calculated by a non-flat function 𝑓(𝑋) = 𝑝�𝐴 = 𝑎𝑗�𝑋�. This is shown as 

𝑏𝑖,𝑗∝ 
1

𝑅𝑗 + ℰ (3) 

, where ℰ∈ℝ+ is a small value (ℰ → 0) to avoid division by zero. Plugging (1) and (3) into a 
single equation yields the final definition of the belief 𝑏𝑖,𝑗 , as 

𝑏𝑖,𝑗 =  
𝑝�𝐴 = 𝑎𝑗�𝑋 = 𝑥𝑖�

𝑅𝑗 + ℰ .𝑍𝑖 (4) 

, where 𝑍𝑖 is a normalization factor that makes ∑ 𝑏𝑖,𝑘𝑛
𝑘=1 = 1, and is calculated as 

𝑍𝑖 = (∑ 𝑝(𝐴=𝑎𝑘|𝑋=𝑥𝑖)
𝑅𝑘+ℰ

𝑛
𝑘=1 )−1. (5) 

Having the above formulations, the PBV is defined formally as follows: 

Definition 2. The primary belief vector (PBV) of sensor event 𝑥𝑖∈𝑆 is a vector 𝒃𝑖∈ℝ𝑛, 
where 𝑏𝑖,𝑗 ≥ 0 is the belief of sensor event 𝑥𝑖 in activity 𝑎𝑗, such that ∑ 𝑏𝑖,𝑘𝑛

𝑘=1 = 1, and 𝑏𝑖,𝑗  
is calculated through (4). 

The posterior probabilities of 𝑝(𝐴 = 𝑎𝑘|𝑋 = 𝑥𝑖) can be learned from the training set using 
the standard statistical methods of maximum likelihood estimation (MLE) or maximum a 
posteriori probability (MAP) estimation. We use MLE in its standard form to calculate this 
quantity from the annotated training set. 
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5.2. Activity Recognition via a Difference of Convex Programming Problem 

In this section, a method for mitigating the effect of uncertainty and HAR is proposed. This 
scheme is based on solving a DCP problem. 

5.2.1. The Definition of Uncertainty 

The uncertainty of a random variable can be considered as its entropy in information theory. 
Similarly, we define the uncertainty, associated with a belief vector as follows: 

Definition 3. Let 𝒙∈ ℝ𝑛 denote a belief vector. The uncertainty of 𝒙, namely 𝑢(𝒙):ℝ𝑛 →
 ℝ, is considered as its entropy, and is defined as 

𝑢(𝒙) = −�𝑥𝑗 log�𝑥𝑗�
𝑛

𝑗=1

. (6) 

It should be noted that 𝑢(𝒙) ≥ 0 will be maximized if the elements of 𝒙 are all equal, and 
minimized (zero) if a single element of 𝒙 equals to 1, and thus, the others equal to zero. 
Function 𝑢(𝒙), and its maximum and minimum points for 𝒙∈ℝ𝟑, are depicted in Fig. 4. As it 
can be seen, 𝑢(𝒙)  is maximized for 𝒙 ≈ (0.33,0.33,0.33) , and minimized for 𝒙 =
(1,0,0),𝒙 = (0,1,0), and 𝒙 = (0,0,1). 

It should be noted that in (6), the term −𝑥𝑗log (𝑥𝑗) is concave because its second derivative 
with respect to 𝑥𝑗  is negative. Therefore, 𝑢(𝒙), which is the summation of concave terms, is 
also concave. 

5.2.2. Human Activity Recognition by Secondary Beliefs 

To resolve the problem of uncertain PBVs, a secondary belief vector (SBV), namely 
𝑴𝒊 ∈ ℝ𝑛 (𝑖 = 1, …𝑇), is calculated for each sensor event 𝑥𝑖∈ 𝑥1:𝑇 . The SBVs are required to 

Fig. 4. The uncertainty function 𝑢(𝒙) for belief vector 𝒙 = (𝑥1,𝑥2,𝑥3), such that 𝑥1 + 𝑥2 + 𝑥3 = 1 
and 𝑥𝑖 ≥ 0, 𝑖 ∈ {1,2,3}. The axis 𝑥3 is not shown for simplicity, because 𝑥3 = 1− 𝑥1 − 𝑥2. 
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satisfy the triple constraints of Table 4 simultaneously. The SBVs have the same properties as 
PBVs, i.e. 𝑀𝑖 ,𝑗 ≥ 0, and ∑ 𝑀𝑖 ,𝑘 = 1𝑛

𝑘=1 . 
 Satisfying the constraints of Table 4 results in belief vectors which their uncertainties are 
trammeled by the neighboring sensor events. The first constraint of Table 4 makes SBVs to be 
close to their associated PBVs, which have low uncertainties. The second constraint enforces 
the neighboring SBVs to close to each other. As a result, the simultaneous aggregation of 
constraints 1, and 2, i.e. ∑ ||𝑴𝒊 −𝑴𝒊+𝟏||2𝑇−1

𝑖=1 < 𝐾, makes the highly uncertain belief vectors 
approach to the neighboring belief vectors, which have low uncertainties; therefore, their 
uncertainties are reduced implicitly. Also, the third constraint lowers the uncertainty of SBVs 
explicitly. It makes confident decisions, based on 𝑴𝒊s, possible in the future. 

 
Table 4. The constraints for calculating secondary belief vectors 𝑴𝒊, 𝑖 = 1, … ,𝑇. 

1. The less the uncertainty of 𝒃𝒊 is, the more close 𝑴𝒊 to 𝒃𝒊 should be. 
2. There are a limited number of segments of activities in 𝑥1:𝑇. Accordingly, the 
number of unequal consecutive SBVs should be limited. That is: 

 ∃ 𝐾∈ℝ+, � ||𝑴𝒊 −𝑴𝒊+𝟏||2

𝑇−1

𝑖=1

< 𝐾 
 

3. The uncertainty of 𝑴𝒊, 𝑖 = 1, … ,𝑇 should be minimized. 

 
 It should be noted that the second constraint of Table 4 holds, because SBVs of sequence 

𝑴𝒋, … ,𝑴𝒋+𝒕 will be the same, if sensor events 𝑥𝑗, … , 𝑥𝑗+𝑡 belong to the same segment of an 
activity (as discussed in [40, 41] too); and naturally, since the number of segments of activities 
is limited, the number of unequal consecutive SBVs should be limited too. 

The constraints of Table 4 can be termed mathematically, and then minimized together, to 
obtain the SBVs. To do this, we propose to solve the non-convex optimization problem of (7). 

𝑴 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑴�∈ℝ𝑇×𝑛 ��
1

𝑢(𝑏𝑖)
��𝒃𝑖 −𝑴� 𝒊��2

𝑇

𝑖=1

+ λ���𝑴� 𝒊+𝟏 −𝑴� 𝒊��2

𝑇−1

𝑖=1

+  γ�𝑢�𝑴� 𝒊�
𝑇

𝑖=1

� 
(7

) 
𝑠. 𝑡    �

∑ 𝑀�𝑖,𝑗𝑛
𝑗=1 = 1,              ∀ 𝑖 = 1, … ,𝑇 

𝑀�𝑖,𝑗 ≥ 0, ∀ 𝑖 = 1, … ,𝑇, 𝑎𝑛𝑑 ∀ 𝑗 = 1, … ,𝑛
�         

, where 𝑴� 𝒊∈ℝ𝑛  and 𝑴𝒊∈ℝ𝑛   are the 𝑖 ’th rows of matrixes 𝑴�∈ℝ𝑇×𝑛 , and 𝑴∈ℝ𝑇×𝑛 , 
respectively. Also, λ > 0, and γ > 0 are the regularization parameters (they can be thought as 
the Lagrange coefficients) that will be adjusted using the training set.  

In (7), the first term implies the first constraint of Table 4. Because, if the uncertainty of 𝒃𝑖 
is decreased, then the coefficient 1

𝑢(𝑏𝑖)
 will increase. Therefore, to minimize (7), vector 𝑴𝒊 

will be determined close to 𝒃𝑖, to moderate the value of the first term.  
The second term of (7) imposes the second constraint of Table 4. In fact, this term is the 

sum of ℓ2-norms, and therefore induces row-sparse solutions [40, 41] (i.e. many successive 
𝑴𝒊s will be the same). Minimizing this term limits the number of segments of activities as 
addressed in the second condition. It should be noted that there is a tradeoff between the first 
and second terms of (7). The first term is minimized with 𝑇 segments (with 𝑴� 𝒊 = 𝒃𝒊, 𝑖 =
1, … ,𝑇), while the second term is minimized with a single segment (with 𝑴� 𝒊+𝟏 = 𝑴� 𝒊, 𝑖 =
1, . . ,𝑇). This tradeoff can be controlled via λ. If λ is increased, the number of segments will 
decrease to moderate the value of the second term, and if it is decreased the number of 
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segments will increase, to lower the value of the first term.  
The third term of (7) results in the third constraint of Table 4 directly, because it is the 

summation of uncertainties of SBVs. The parameter γ > 0  controls the total amount of 
allowed uncertainty associated with the SBVs, such that the increase of γ  results in the 
decrease of uncertainty of the SBVs. For instance, γ = ∞, enforces 𝑢(𝑴𝒊) = 0, 𝑖 = 1, … ,𝑇. 

Since 𝑴𝑖s are belief vectors, the constraints of (7) guarantee that the elements of 𝑴𝑖 are 
greater than or equal to zero, and sum up to 1. As it will be discussed, (7) shows a DCP 
problem, and can be solved by the standard CCP algorithm. 

Having calculated the secondary belief vectors 𝑴𝒊∈ ℝ𝒏, 𝑖 = 1, … ,𝑇 , the label of the 
activity for sensor event 𝑥𝑖 ∈ 𝑋1:𝑇, namely 𝑙𝑖∈{1, … ,𝑛},  is calculated as  

𝑙𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑗(𝑀𝑖,𝑗). (8) 
Similar to our proposed procedure, [40] proposes to solve the following convex 

optimization problem to segment a sequential data stream when no outlier is considered.  

𝑴 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑴�∈ℝ𝑇×𝑛 ����𝒃𝑖 −𝑴� 𝒊��
2

𝑇

𝑖=1

+ λ�𝑤𝑖 ��𝑴� 𝒊+𝟏 − 𝑴� 𝒊��2

𝑇−1

𝑖=1

�. (9) 

Here, 𝑤𝑖 > 0 is a weight that shows how likely two adjacent sensor events would be in the 
same segment, and the other notations and constraints are the same as (7). 𝑤𝑖s are determined 
based on the prior knowledge of the adjacent data points. In the absence of prior knowledge, 
𝑤𝑖 = 1 is used [41]. 

The formulation of (9) can be interpreted similar to (7), with the difference that the concept 
of uncertainty is omitted in (9), and 𝑤𝑖 = 1 for 𝑖 = 1, … ,𝑇 − 1. Therefore, if (7) is substituted 
by (9) with the same constraints, then the proposed method becomes a HAR scheme which is 
based on convex optimization and does not take uncertainty into account. We call this method 
convex optimization-based activity recognition (CPAR) throughout the paper. Our simulations 
show that the proposed method outperforms CPAR. 

5.2.3. Difference of Convex Programming Problems 

A difference of convex programming (DCP) problem is an optimization problem that can 
have the form 

𝒙 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥��𝑓0(𝒙�) − 𝑔0(𝒙�)�, 
(10) 𝑠. 𝑡        𝑓𝑖(𝒙�)−  𝑔𝑖(𝒙�) ≤ 0,        𝑖 = 1, … , ℎ 

, where 𝒙� ∈ ℝ𝑛 is the optimization variable, 𝒙 ∈ ℝ𝑛  is the solution, and 𝑓𝑖 ∶  ℝ𝑛 →  ℝ and 
𝑔𝑖 ∶  ℝ𝑛 →  ℝ for 𝑖 = 1, … ,ℎ are convex. This problem can be solved by the convex-concave 
procedure (CCP) algorithm effectively [13]. Table 5 summerizes the CCP algorithm [13].  

According to (10), (7) can be written as a DCP problem. That is, because the third term in 
(7) is concave, and its first two terms are convex. Also, the left sides of the constraints of (7) 
are affine expressions. Thus, (7) denotes a DCP problem and can be solved using the standard 
CCP algorithm. We set 𝑴� 0 = [𝒃𝑖]𝑇×𝑛 , 𝑖 = 1, … ,𝑇 as the initial feasible points in the CCP 
algorithm to solve the DCP problem of (7). 

6. Simulations and Results 
This section represents the results of the empirical studies. Two experiments are carried out 

to assess the performance of the proposed method. In the first experiment, the proposed 



334           Ghasemi et al.: Human Activity Recognition in Smart Homes Based on a Difference of Convex Programming Problem 

method is compared with four benchmark schemes, which are based on hidden Markov models 
(HMMs), conditional random fields (CRFs) and skip chain conditional random fields 
(SCCRFs). In the second experiment, the recent approach of [40], which is based on (9) and 
does not take uncertainty into account, is incorporated in the proposed method. The results 
reveal the role of handling uncertainty. 

We use precision, recall, F-measure, and accuracy to evaluate the performance of the 
algorithms as follows. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑡𝑦) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 (11) 

𝑅𝑒𝑐𝑎𝑙𝑙(𝑆𝑒𝑛𝑠𝑒𝑡𝑖𝑣𝑖𝑡𝑦) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (12) 

𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 

(13) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 (14) 

, where TP, TN, FP, and FN denote true positive, true negative, false positive, and false 
negative, respectively, for the labeling of a sensor event. 

6.1. The Dataset 

A publicly available dataset, named Kyoto1 [1], from the Center for Advanced Studies in 
Adaptive Systems (CASAS) smart house project, is used for the simulations. The dataset 
represents 20 participants performing eight ADLs in an apartment. This dataset consists of two 
parts. The first and the second parts of the dataset include pre-segmented and interleaved 
sensor data streams of activities, respectively. Each sensor data stream of the second part 
pertains to a single person. The activities, their assigned IDs, and the number of their sensor 
events are listed in Table 6. To compose the first part of the dataset, the participants have 

1 Available online from http://casas.wsu.edu/datasets. 

 Table 5. The standard CCP algorithm. 
1.  Input 
2.      Initial feasible point: 𝒙�𝟎 
3.      Return threshold: δ 
4.  Output 
5.  The solution of the DCP problem of (10) : 𝒙 
6.  Variables 
7.      Step counter: 𝑘 
8.  Body 
9.      𝑘 = 0 

10.      Do  
11.          ∀ 𝑖 = 0, … ,ℎ,    𝑔�𝑖(𝒙) = 𝑔𝑖(𝒙�𝒌) + ∇𝑔𝑖(𝒙�𝒌)𝑇(𝒙− 𝒙�𝒌) 
12.          𝒙�𝒌+𝟏 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥��𝑓0(𝒙�) − 𝑔�0(𝒙�)�,   𝑠. 𝑡  ∀ 𝑖 = 1, … , ℎ,    𝑓𝑖(𝒙�) −  𝑔�𝑖(𝒙�) ≤ 0 
13.          𝑘 = 𝑘 + 1 
14.      While (𝑓0(𝒙�𝒌+𝟏) − 𝑔�0(𝒙�𝒌+𝟏))− (𝑓0(𝒙�𝒌) − 𝑔�0(𝒙�𝒌)) >  δ 
15.      𝒙 = 𝒙�𝒌 
16.  End  
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performed the tasks individually, and the corresponding data have been stored separately for 
each activity. For the second part of the dataset, the participants have been asked to perform 
the entire set of activities again in any order, interleaved or parallel style if needed (these data 
have also been stored separately). This dataset well suits our study, because the sensor events 
of activities are highly interleaved. 

We use the first part of the dataset only as a training set for discretization process and to 
compute PBVs for sensor events as described in section  5.2. The performance of the proposed 
method is measured for labeling the interleaved sensor data streams of the second part.  In the 
following sections, the IDs of  activities from Table 6 are used instead of their labels.  

The data of users’ activities have been collected by various types of sensors. They include 
72 discrete sensors with binary domains and 6 continuous sensors. We discretize each 
continuous sensor domain into three intervals. Therefore, there will be 162 possible sensor 
events totally i.e. |𝑆| = 162. The map of the smart home is depicted in Fig. 5. 

Table 6. The activities and the number of their sensor events. 

ID Activity label Number of 
sensor events ID Activity label Number of 

sensor events 

1 Fill medication 
dispenser 624 5 Prepare birthday 

card 854 

2 Watch DVD 1100 6 Prepare soup 1251 

3 Water plants 1090 7 Cleaning 1765 

4 Answer the phone 412 8 Choose outfit 564 

      

Fig. 5. The smart home design (M= motion sensors, T= temperature sensors, I=item sensors, 
AD= water and burner sensors, D=cabinet sensors) [1]. 
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6.2. Experimental Settings 

In the following experiments, a leave-one-out-cross-validation (LOOCV) strategy is 
conducted to evaluate every HAR method. That is, the dataset is divided into 𝑘 = 20 folds, 
with each fold containing a single participant’s data stream. In each round of LOOCV, one 
distinct fold is selected for testing, and the remaining 𝑘 − 1 folds are retained for training. 
This process is repeated 𝑘 times, and in each round, a distinct fold is selected as the test set. 
The results are aggregated to yield the final performance measure values. Table 7 sums up the 
common parameters in the following experiments. The computations of λ and γ, are illustrated 
in the following section. 

6.3. Implementation Setup for the Proposed Method 

Our goal is to assess the performance of the proposed method for labeling the interleaved 
sensor data streams of the second part of the dataset. We conduct an LOOCV strategy (as 
described in section  6.2) to asses the performance of the proposed method. However, the 
parameters γ, and λ of (7) should be calculated beforehand. To do this, in each round of 
LOOCV, the values of γ, and λ are obtained by a grid search scheme such that they maximize 
the classification accuracy of the training set. Having calculated these values, (7) is solved to 
segment and classify the sensor events of the test set as described in section  5.2. 

Fig. 6 shows the color map of the grid search strategy for the first round of LOOCV to 
determine γ, and λ. The ranges [1,10], and [1,20] are swept for γ, and λ, respectively. No 

Table 7.  Parameter settings. 
Parameter Value Description 

𝑘 20 The number of folds in the cross-validations. 
λ 14 Lagrange coefficient in the DCP problem (i.e. equation (7) ). 
γ 3 Lagrange coefficient in the DCP problem (i.e. equation (7) ). 
δ 0.01 The return threshold of the CCP algorithm. 
𝑴�𝟎 [𝒃𝑖]𝑇×𝑛 The initial feasible point of the CCP algorithm. 

 

Fig. 6. The grid search results, to determine λ, and γ. The brighter areas show higher values of 
accuracy. λ= 14, and γ = 3 yield the maximum accuracy. 
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better accuracy achieved for some further extents of values. As it can be seen, 𝛾 = 3, and 
λ = 14 (and similarly 𝛾 = 3, and λ = 13) result in the maximum recognition accuracy. The 
calculations of γ and λ are carried out the same in the other rounds too. However, it is turned 
out that, 𝛾 = 3, and λ = 14 values yield acceptable results (maximum or near to maximum 
accuracies) in the other rounds too. 

6.4.  Experiment 1 

In this experiment, the proposed method is compared with four widely adopted HAR 
schemes as benchmarks. At first, a comparison with an HMM-based HAR procedure is 
performed. Then, the proposed method is compared with three approaches which are based on 
CRFs and SCCRFs. The LOOCV strategy of section  6.2 is conducted to evaluate all of the 
approaches. 

To implement the HMM, similar to some other works, such as [1, 4, 20], the activities and 
sensors are treated as the hidden and observable states, respectively. A first-order HMM with 
fully interconnected hidden states is implemented for this purpose. The well-known Viterbi 
algorithm is used for inference.  

 The results of this experiment are taken in Table 8. The higher average results are depicted 
in yellow. As it can be seen, the precisions, recalls, and F-measures of the proposed method are 
higher than, or comparable to HMM for most of the activities. Totally, the proposed method 
has a higher average of precision and recall than HMM. Also, the 82.3% average F-measure of 
the proposed method outperforms the 73.5% average F-measure of HMM. The variances of 
the performance measures show that the proposed method, with much lower variances than 
HMM, has a more stable performance. Also, as it is shown in Fig. 7, the total accuracy of the 
proposed method amounts to 82.61%, which outperforms the 76.83% accuracy of HMM. 

 

In the following, the proposed method is compared with three discriminative modeling 
formalisms for HAR. They are based on linear-chain conditional random fields (LCCRF), and 
skip chain conditional random fields (SCCRFs). Since SCCRFs can capture long range 
dependencies, they are claimed to be suited for inferring interleaved activities,. 

To employ LCCRFs, two approaches were implemented. In the first approach, a separate 
model with two hidden states (happen (Y), not happen (N)) is trained for each activity. A novel 
stream is inputted to the LCCRFs of activities, and the activity with the highest probability is 
inferred for each sensor event. This approach is called SMSA (single model for a single 

Table 8. The performance measures of HMM, and the proposed method (PM).  
 Precision Recall F-Measure 

Activity ID HMM PM HMM PM HMM PM 
1 0.810 0.937 0.827 0.808 0.818 0.867 
2 0.729 0.926 0.860 0.750 0.790 0.829 
3 0.809 0.742 0.862 0.759 0.834 0.750 
4 0.181 0.696 0.244 0.682 0.208 0.689 
5 0.841 0.805 0.850 0.904 0.845 0.852 
6 0.891 0.874 0.830 0.884 0.860 0.879 
7 0.720 0.781 0.645 0.865 0.681 0.821 
8 0.842 0.912 0.853 0.862 0.847 0.886 

Average 0.728 0.835 0.747 0.814 0.735 0.823 
Variance 0.052 0.008 0.046 0.006 0.049 0.005 
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activity). In the second approach, similar to some other works, such as [20, 42], a single CRF 
model is trained for all activities, such that the activities and sensor events are considered as 
hidden states and observable states, respectively. Having an observed sensor data stream, it is 
inputted to the CRF to yield the most probable sequence of activities. This approach is named 
SMAA (single model for all activities). In both approaches, the loopy belief propagation (LBP) 
mechanism is used for inference. 

To employ SCCRFs, the main concern is how to add the skip chains to the corresponding 
unrolled graph. A heuristic for this task is proposed in [27] (named CIGAR). That is, for each 
activity, named 𝑎, a separate SCCRF with two hidden states (happen (Y), not happen (N)) is 
trained. A skip chain between two unrolled hidden states 𝑖, and 𝑗 (𝑗 > 𝑖) is added if it is 
observed that 𝑝�𝑠𝑗�𝑠𝑖 ,𝑎� > 𝜃, where 𝑠𝑖 and 𝑠𝑗  are the 𝑖’th and 𝑗’th sensor events in the input 
stream respectively, 𝜃 > 0 is a threshold, and 𝑝�𝑠𝑗�𝑠𝑖 ,𝑎� is the probability of 𝑠𝑗  occurring 
after 𝑠𝑖, for activity 𝑎. Given a novel sensor data stream, it is inputted to the trained SCCRFs 
of the activities, and the activity with the maximum probability is inferred as the label of the 
sensor events. In our experiments, 𝜃 = 0.95 yielded the best results. More details on the 
framework of CIGAR can be found in [27]. In this approach the LBP mechanism is used for 
inference too. 

 The precisions, recalls, and F-measures, resulted from the above-mentioned methods are 
depicted in Table 9. Higher average results are depicted in yellow. As it is shown, the 
F-measures resulted from the proposed method are higher than or comparable to those of 
CIGAR, SMSA, and SMAA for most of the activities. Totally, the proposed method with an 

Table 9. The performance measures of CIGAR, SMSA, SMAA, and the proposed method (PM).  
 Precision Recall F-Measure 

Activity 
ID 

CIGAR SMSA SMAA PM CIGAR SMSA SMAA PM CIGAR SMSA SMAA PM 

1 0.654 0.117 0.923 0.937 0.027 0.973 0.575 0.808 0.052 0.209 0.709 0.867 
2 0.870 0.681 0.752 0.926 0.576 0.914 0.816 0.750 0.693 0.780 0.782 0.829 
3 0.824 0.739 0.947 0.742 0.395 0.817 0.343 0.759 0.534 0.776 0.504 0.750 
4 0.298 0.117 0.526 0.696 0.087 0.676 0.097 0.682 0.135 0.199 0.164 0.689 
5 0.803 0.831 0.855 0.805 0.754 0.873 0.855 0.904 0.778 0.852 0.855 0.852 
6 0.589 0.847 0.805 0.874 0.810 0.626 0.846 0.884 0.682 0.720 0.825 0.879 
7 0.477 0.958 0.595 0.781 0.955 0.624 0.948 0.865 0.637 0.756 0.731 0.821 
8 0.694 0.693 0.789 0.912 0.257 0.905 0.876 0.862 0.375 0.785 0.830 0.886 

Average 0.650 0.624 0.774 0.835 0.485 0.801 0.671 0.814 0.486 0.636 0.673 0.823 
Variance 0.037 0.105 0.021 0.008 0.119 0.019 0.093 0.006 0.073 0.072 0.055 0.005 

             

Fig. 7. The total accuracies of HMM, CIGAR, SMSA, SMAA, and the proposed method. 
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average F-measure of 82.16%, outperforms CIGAR, SMSA, and SMAA with average 
F-measures of 48.59%, 63.46%, and 67.50%, respectively. The 81.4% average recall and 83.5% 
average precision resulted from the proposed method outperform the other methods too. Also, 
as it is shown in Fig. 7, the 82.61% accuracy of the proposed method is better than the 73.45%, 
72.15%, and 60.13% accuracy of SMAA, SMSA, and CIGAR, respectively. Moreover, the 
proposed method has a more stable performance than others, because of its low variances of  
the performance measures.  

It should be noted that the lower performance of CIGAR is due to the possibility of adding 
inefficient skip chains. This problem is inevitable in this framework. 

It is worth mentioning that despite the higher average results of the proposed method, it is 
not always the case for each individual activity; such as activity number 3, i.e. “water plants”, 
in Table 8 and Table 9. The confusion matrix of the proposed method is shown in Table 10. It 
testifies that the lower performance of recognizing activity 3, is mainly because of its 
misclassification as activity 7, i.e. “cleaning”, and vice versa. As it is highlighted in Table 10, 
218 sensor events of activity 3, and 198 sensor events of activity 7 have been misclassified as 
activities 7 and 3, respectively. The reason is that both activities generate many common 
sensor events. In both activities 7 and 3, the users highly interact with the appliances in the 
kitchen closet and kitchen environment, according to the scripts of activities in the dataset. 
Therefore, both activities trigger many common sensors. This makes the discrimination 
between activities 3 and 7 very difficult. Now, consider HMM results in Table 8. Although the 
F-measure of HMM is higher than the proposed method for activity 3, but its F-measure for 
activity 7 is much lower than the proposed method. This is also the case for SMSA and SMAA 
algorithms as shown in Table 9. 

One reason for generating high ratios of common sensor events for different activities, can 
be the characteristics of the underlying sensor network, such as the placements of the sensor 
nodes [43]. If the sensor network has not been deployed efficiently, it may not capture 
discriminative data patterns, which are effective for distinguishing between activities. 
Efficient deployment of sensor networks in smart homes can be the topic of further research 
[43]. 

6.5. Experiment 2 

In this experiment, the DCP problem of the proposed method (i.e. Equation (7)) is 
substituted by the convex optimization problem of [40], i.e. Equation (9), as described in 
section  5.2. This procedure does not consider uncertainty. The other steps are the same as the 

Table 10. The confusion matrix of the proposed method. 
 
 

  Predicted Classes 
1 2 3 4 5 6 7 8 

C
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re
ct

 C
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1 504 13 5 17 33 48 4 0 
2 6 825 3 27 127 52 53 7 
3 2 10 827 6 0 24 218 3 
4 11 5 13 281 0 24 72 6 
5 0 7 1 37 772 9 6 22 
6 15 7 48 21 0 1106 46 8 
7 0 22 198 6 8 3 1527 1 
8 0 2 19 9 19 0 29 486 
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proposed method. This method is named CPAR (convex programming activity recognition). 
The results of this experiment can reveal the role of managing uncertainty in HAR. 

Since we don’t consider any prior knowledge of whether two adjacent sensor events belong 
to the same segment or not, the coefficients 𝑤𝑖 (𝑖 = 1, … ,𝑇) in (9) are considered equal to 1. 
Similar to the proposed method, the LOOCV scheme along with a grid search strategy is 
performed to calculate λ in each round. Fig. 8 shows the grid search results in the first round 
of LOOCV. A range of [0.1,10] is swept to find the best value of λ. λ = 1.5  yields the 
maximum accuracy in this round. The process is the same for the other rounds too. 

The performance measures resulted from CPAR, and the proposed method are summarized 
in Table 11. Higher average results are depicted in yellow. As it can be seen, the proposed 
method has a higher F-measure in comparison to CPAR for all activities. Totally, CPAR with 
average precision, recall, and F-measure of 82.3%, 76.9%, and 78.2%, respectively, has a 
lower performance in comparison to the proposed method. Moreover, the accuracy of CPAR 
amounted to 79.97%, which is lower than the 82.61% accuracy of the proposed method. 
Therefore, our method outperforms CPAR, too. As it is depicted in Table 11, the variances of 
performance measures in both methods are very low. 

 The results of this experiment show the key role of managing uncertainty in our approach. 
That is, if uncertainty minimization is omitted from the proposed method (i.e. using equation 
(9) instead of (7)), then the HAR performance will be deteriorated. 

Table 11.The performance measures of CPAR and the proposed method (PM).  
 Precision Recall F-Measure 

Activity ID CPAR PM CPAR PM CPAR PM 
1 0.919 0.937 0.747 0.808 0.824 0.867 
2 0.896 0.926 0.675 0.750 0.770 0.829 
3 0.890 0.742 0.648 0.759 0.750 0.750 
4 0.797 0.696 0.476 0.682 0.596 0.689 
5 0.753 0.805 0.936 0.904 0.834 0.852 
6 0.797 0.874 0.890 0.884 0.841 0.879 
7 0.728 0.781 0.916 0.865 0.811 0.821 
8 0.802 0.912 0.863 0.862 0.832 0.886 

Average 0.823 0.835 0.769 0.814 0.782 0.823 
Variance 0.005 0.008 0.026 0.006 0.007 0.005 

       
       

Fig. 8. The grid search results, to find the best value of λ. λ = 1.5 maximizes the accuracy. 
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7.  Conclusion 
This paper introduced a novel mechanism to perform HAR in smart homes. It is based on 

minimizing an objective function in the form of a DCP problem. The proposed method 
performs a global inference by solving the DCP problem on the entire input sensor data stream. 
Furthermore, the effect of uncertainty is mitigated by considering appropriate constraints in 
order to formulate the DCP problem. To tackle these issues, given an input sensor data stream, 
a primary belief vector (PBV) is calculated for each sensor event based on the posterior PDFs 
of activities, and their flatness. Then, the uncertainties of the PBVs are alleviated by solving 
the DCP problem. The solution of the DCP problem yields a sequence of secondary belief 
vectors (SBVs). The final activity inference is based on the resulting SBVs. 

Two experiments were carried out to assess the performance of the proposed method on a 
well-known and publicly available dataset from the CASAS smart home project. In the first 
experiment, four HAR approaches based on HMMs, LCCRFs, and SCCRFs were 
implemented as benchmarks. The proposed method outperformed these schemes with an 
acceptable accuracy of 82.61% and an average F-measure of 82.3%. In the second experiment, 
a similar approach, based on convex optimization, was implemented. This approach did not 
take uncertainty into account. In this case, the performance of the HAR method deteriorated to 
79.97% accuracy, and an average F-measure of 78.2%. This experiment testified that the 
handling of uncertainty in the proposed HAR method had been a promising paradigm. 
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