• Title/Summary/Keyword: human activity recognition (HAR)

검색결과 20건 처리시간 0.023초

LoS/NLoS Identification-based Human Activity Recognition System Using Channel State Information (채널 상태 정보를 활용한 LoS/NLoS 식별 기반 인간 행동 인식 시스템)

  • Hyeok-Don Kwon;Jung-Hyok Kwon;Sol-Bee Lee;Eui-Jik Kim
    • Journal of Internet of Things and Convergence
    • /
    • 제10권3호
    • /
    • pp.57-64
    • /
    • 2024
  • In this paper, we propose a Line-of-Sight (LoS)/Non-Line-of-Sight (NLoS) identification- based Human Activity Recognition (HAR) system using Channel State Information (CSI) to improve the accuracy of HAR, which dynamically changes depending on the reception environment. to consider the reception environment of HAR system, the proposed system includes three operational phases: Preprocessing phase, Classification phase, and Activity recognition phase. In the preprocessing phase, amplitude is extracted from CSI raw data, and noise in the extracted amplitude is removed. In the Classification phase, the reception environment is categorized into LoS and NLoS. Then, based on the categorized reception environment, the HAR model is determined based on the result of the reception environment categorization. Finally, in the activity recognition phase, human actions are classified into sitting, walking, standing, and absent using the determined HAR model. To demonstrate the superiority of the proposed system, an experimental implementation was performed and the accuracy of the proposed system was compared with that of the existing HAR system. The results showed that the proposed system achieved 16.25% higher accuracy than the existing system.

Human Activity Recognition in Smart Homes Based on a Difference of Convex Programming Problem

  • Ghasemi, Vahid;Pouyan, Ali A.;Sharifi, Mohsen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권1호
    • /
    • pp.321-344
    • /
    • 2017
  • Smart homes are the new generation of homes where pervasive computing is employed to make the lives of the residents more convenient. Human activity recognition (HAR) is a fundamental task in these environments. Since critical decisions will be made based on HAR results, accurate recognition of human activities with low uncertainty is of crucial importance. In this paper, a novel HAR method based on a difference of convex programming (DCP) problem is represented, which manages to handle uncertainty. For this purpose, given an input sensor data stream, a primary belief in each activity is calculated for the sensor events. Since the primary beliefs are calculated based on some abstractions, they naturally bear an amount of uncertainty. To mitigate the effect of the uncertainty, a DCP problem is defined and solved to yield secondary beliefs. In this procedure, the uncertainty stemming from a sensor event is alleviated by its neighboring sensor events in the input stream. The final activity inference is based on the secondary beliefs. The proposed method is evaluated using a well-known and publicly available dataset. It is compared to four HAR schemes, which are based on temporal probabilistic graphical models, and a convex optimization-based HAR procedure, as benchmarks. The proposed method outperforms the benchmarks, having an acceptable accuracy of 82.61%, and an average F-measure of 82.3%.

Human Activity Recognition Using Body Joint-Angle Features and Hidden Markov Model

  • Uddin, Md. Zia;Thang, Nguyen Duc;Kim, Jeong-Tai;Kim, Tae-Seong
    • ETRI Journal
    • /
    • 제33권4호
    • /
    • pp.569-579
    • /
    • 2011
  • This paper presents a novel approach for human activity recognition (HAR) using the joint angles from a 3D model of a human body. Unlike conventional approaches in which the joint angles are computed from inverse kinematic analysis of the optical marker positions captured with multiple cameras, our approach utilizes the body joint angles estimated directly from time-series activity images acquired with a single stereo camera by co-registering a 3D body model to the stereo information. The estimated joint-angle features are then mapped into codewords to generate discrete symbols for a hidden Markov model (HMM) of each activity. With these symbols, each activity is trained through the HMM, and later, all the trained HMMs are used for activity recognition. The performance of our joint-angle-based HAR has been compared to that of a conventional binary and depth silhouette-based HAR, producing significantly better results in the recognition rate, especially for the activities that are not discernible with the conventional approaches.

Development of a Machine-Learning based Human Activity Recognition System including Eastern-Asian Specific Activities

  • Jeong, Seungmin;Choi, Cheolwoo;Oh, Dongik
    • Journal of Internet Computing and Services
    • /
    • 제21권4호
    • /
    • pp.127-135
    • /
    • 2020
  • The purpose of this study is to develop a human activity recognition (HAR) system, which distinguishes 13 activities, including five activities commonly dealt with in conventional HAR researches and eight activities from the Eastern-Asian culture. The eight special activities include floor-sitting/standing, chair-sitting/standing, floor-lying/up, and bed-lying/up. We used a 3-axis accelerometer sensor on the wrist for data collection and designed a machine learning model for the activity classification. Data clustering through preprocessing and feature extraction/reduction is performed. We then tested six machine learning algorithms for recognition accuracy comparison. As a result, we have achieved an average accuracy of 99.7% for the 13 activities. This result is far better than the average accuracy of current HAR researches based on a smartwatch (89.4%). The superiority of the HAR system developed in this study is proven because we have achieved 98.7% accuracy with publically available 'pamap2' dataset of 12 activities, whose conventionally met the best accuracy is 96.6%.

A Robust Approach for Human Activity Recognition Using 3-D Body Joint Motion Features with Deep Belief Network

  • Uddin, Md. Zia;Kim, Jaehyoun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권2호
    • /
    • pp.1118-1133
    • /
    • 2017
  • Computer vision-based human activity recognition (HAR) has become very famous these days due to its applications in various fields such as smart home healthcare for elderly people. A video-based activity recognition system basically has many goals such as to react based on people's behavior that allows the systems to proactively assist them with their tasks. A novel approach is proposed in this work for depth video based human activity recognition using joint-based motion features of depth body shapes and Deep Belief Network (DBN). From depth video, different body parts of human activities are segmented first by means of a trained random forest. The motion features representing the magnitude and direction of each joint in next frame are extracted. Finally, the features are applied for training a DBN to be used for recognition later. The proposed HAR approach showed superior performance over conventional approaches on private and public datasets, indicating a prominent approach for practical applications in smartly controlled environments.

Trends in Activity Recognition Using Smartphone Sensors (스마트폰 기반 행동인식 기술 동향)

  • Kim, M.S.;Jeong, C.Y.;Sohn, J.M.;Lim, J.Y.;Chung, S.E.;Jeong, H.T.;Shin, H.C.
    • Electronics and Telecommunications Trends
    • /
    • 제33권3호
    • /
    • pp.89-99
    • /
    • 2018
  • Human activity recognition (HAR) is a technology that aims to offer an automatic recognition of what a person is doing with respect to their body motion and gestures. HAR is essential in many applications such as human-computer interaction, health care, rehabilitation engineering, video surveillance, and artificial intelligence. Smartphones are becoming the most popular platform for activity recognition owing to their convenience, portability, and ease of use. The noticeable change in smartphone-based activity recognition is the adoption of a deep learning algorithm leading to successful learning outcomes. In this article, we analyze the technology trend of activity recognition using smartphone sensors, challenging issues for future development, and a strategy change in terms of the generation of a activity recognition dataset.

Performance of Exercise Posture Correction System Based on Deep Learning (딥러닝 기반 운동 자세 교정 시스템의 성능)

  • Hwang, Byungsun;Kim, Jeongho;Lee, Ye-Ram;Kyeong, Chanuk;Seon, Joonho;Sun, Young-Ghyu;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • 제22권5호
    • /
    • pp.177-183
    • /
    • 2022
  • Recently, interesting of home training is getting bigger due to COVID-19. Accordingly, research on applying HAR(human activity recognition) technology to home training has been conducted. However, existing paper of HAR proposed static activity instead of dynamic activity. In this paper, the deep learning model where dynamic exercise posture can be analyzed and the accuracy of the user's exercise posture can be shown is proposed. Fitness images of AI-hub are analyzed by blaze pose. The experiment is compared with three types of deep learning model: RNN(recurrent neural network), LSTM(long short-term memory), CNN(convolution neural network). In simulation results, it was shown that the f1-score of RNN, LSTM and CNN is 0.49, 0.87 and 0.98, respectively. It was confirmed that CNN is more suitable for human activity recognition than other models from simulation results. More exercise postures can be analyzed using a variety learning data.

Development of a Hybrid Deep-Learning Model for the Human Activity Recognition based on the Wristband Accelerometer Signals

  • Jeong, Seungmin;Oh, Dongik
    • Journal of Internet Computing and Services
    • /
    • 제22권3호
    • /
    • pp.9-16
    • /
    • 2021
  • This study aims to develop a human activity recognition (HAR) system as a Deep-Learning (DL) classification model, distinguishing various human activities. We solely rely on the signals from a wristband accelerometer worn by a person for the user's convenience. 3-axis sequential acceleration signal data are gathered within a predefined time-window-slice, and they are used as input to the classification system. We are particularly interested in developing a Deep-Learning model that can outperform conventional machine learning classification performance. A total of 13 activities based on the laboratory experiments' data are used for the initial performance comparison. We have improved classification performance using the Convolutional Neural Network (CNN) combined with an auto-encoder feature reduction and parameter tuning. With various publically available HAR datasets, we could also achieve significant improvement in HAR classification. Our CNN model is also compared against Recurrent-Neural-Network(RNN) with Long Short-Term Memory(LSTM) to demonstrate its superiority. Noticeably, our model could distinguish both general activities and near-identical activities such as sitting down on the chair and floor, with almost perfect classification accuracy.

CNN Based Human Activity Recognition System Using MIMO FMCW Radar (다중 입출력 FMCW 레이다를 활용한 합성곱 신경망 기반 사람 동작 인식 시스템)

  • Joon-sung Kim;Jae-yong Sim;Su-lim Jang;Seung-chan Lim;Yunho Jung
    • Journal of Advanced Navigation Technology
    • /
    • 제28권4호
    • /
    • pp.428-435
    • /
    • 2024
  • In this paper, a human activity regeneration (HAR) system based on multiple input multiple output frequency modulation continuous wave (MIMO FMCW) radar was designed and implemented. Using point cloud data from MIMO radar sensors has advantages in terms of privacy, safety, and accuracy. For the implementation of the HAR system, a customized neural network based on PointPillars and depthwise separate convolutional neural network (DS-CNN) was developed. By processing high-resolution point cloud data through a lightweight network, high accuracy and efficiency were achieved. As a result, the accuracy of 98.27% and the computational complexity of 11.27M multiply-accumulates (Macs) were achieved. In addition, the developed neural network model was implemented on Raspberry-Pi embedded system and it was confirmed that point cloud data can be processed at a speed of up to 8 fps.

Human activity recognition with analysis of angles between skeletal joints using a RGB-depth sensor

  • Ince, Omer Faruk;Ince, Ibrahim Furkan;Yildirim, Mustafa Eren;Park, Jang Sik;Song, Jong Kwan;Yoon, Byung Woo
    • ETRI Journal
    • /
    • 제42권1호
    • /
    • pp.78-89
    • /
    • 2020
  • Human activity recognition (HAR) has become effective as a computer vision tool for video surveillance systems. In this paper, a novel biometric system that can detect human activities in 3D space is proposed. In order to implement HAR, joint angles obtained using an RGB-depth sensor are used as features. Because HAR is operated in the time domain, angle information is stored using the sliding kernel method. Haar-wavelet transform (HWT) is applied to preserve the information of the features before reducing the data dimension. Dimension reduction using an averaging algorithm is also applied to decrease the computational cost, which provides faster performance while maintaining high accuracy. Before the classification, a proposed thresholding method with inverse HWT is conducted to extract the final feature set. Finally, the K-nearest neighbor (k-NN) algorithm is used to recognize the activity with respect to the given data. The method compares favorably with the results using other machine learning algorithms.