• Title/Summary/Keyword: human B & T cells

Search Result 386, Processing Time 0.029 seconds

Effects of Bambusae Caulis in Taeniam Extract on the UVB-induced Cell Death, Oxidative Stress and Matrix Metalloproteinase 1 Expression in Keratinocytes (각질세포에서 자외선B가 유도한 세포 사멸, 산화적 스트레스 및 matrix metalloproteinase 1 발현에 대한 죽여추출물의 영향)

  • Seok, Jin Kyung;Kwak, Jun Yup;Seo, Hyeong Ho;Suh, Hwa Jin;Boo, Yong Chool
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.1
    • /
    • pp.9-20
    • /
    • 2015
  • Ultraviolet radiation (UV) is a major cause of skin photoaging, and effective UV protecting agents are needed for the skin health and beauty. This study was undertaken to examine the effects of Bambusae caulis in Taeniam extract (BCTE) on UVB-induced cell death, oxidative stress and matrix metalloproteinase 1 (MMP1) expression in cell-based assays. HaCaT human keratinocytes were exposed to UVB in the presence of BCTE at different concentrations and resulting changes in cell viability and biochemical events were determined. The results showed that BCTE enhanced the viabilities of UVB-exposed cells, and attenuated apoptotic events such as cleavage of procaspase 3 to its active form, and the increase of Bax to Bcl-2 ratios. BCTE also attenuated the reactive oxygen generation and lipid peroxidation in cells exposed to UVB. Additionally, it attenuated the expression of matrix metalloproteinase 1 and the phosphorylation of c-Jun N-terminal kinase stimulated by UVB. Conclusively, the present study demonstrated that BCTE pro tected skin cells from the UVB-induced cell death, oxidative stress and MMP1 expression, suggesting its potential use as a cosmetic ingredient mitigating some features of the skin photoaging.

Genetic Variation in the ABCB1 Gene May Lead to mRNA Level Chabge: Application to Gastric Cancer Cases

  • Mansoori, Maryam;Golalipour, Masoud;Alizadeh, Shahriar;Jahangirerad, Ataollah;Khandozi, Seyed Reza;Fakharai, Habibollah;Shahbazi, Majid
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8467-8471
    • /
    • 2016
  • Background: One of the major mechanisms for drug resistance is associated with altered anticancer drug transport, mediated by the human-adenosine triphosphate binding cassette (ABC) transporter superfamily proteins. The overexpression of adenosine triphosphate binding cassette, sub-family B, member 1 (ABCB1) by multidrug-resistant cancer cells is a serious impediment to chemotherapy. In our study we have studied the possibility that structural single-nucleotide polymorphisms (SNP) are the mechanism of ABCB1 overexpression. Materials and Methods: A total of 101 gastric cancer multidrug resistant cases and 100 controls were genotyped with sequence-specific primed PCR (SSP-PCR). Gene expression was evaluated for 70 multidrug resistant cases and 54 controls by real time PCR. The correlation between the two groups was based on secondary structures of RNA predicted by bioinformatics tool. Results: The results of genotyping showed that among 3 studied SNPs, rs28381943 and rs2032586 had significant differences between patient and control groups but there were no differences in the two groups for C3435T. The results of real time PCR showed over-expression of ABCB1 when we compared our data with each of the genotypes in average mode. Prediction of secondary structures in the existence of 2 related SNPs (rs28381943 and rs2032586) showed that the amount of ${\Delta}G$ for original mRNA is higher than the amount of ${\Delta}G$ for the two mentioned SNPs. Conclusions: We have observed that 2 of our studied SNPs (rs283821943 and rs2032586) may elevate the expression of ABCB1 gene, through increase in mRNA stability, while this was not the case for C3435T.

Orobol, A Derivative of Genistein, Inhibits Heat-Killed Propionibacterium acnes-Induced Inflammation in HaCaT Keratinocytes

  • Oh, Yunsil;Hwang, Hwan Ju;Yang, Hee;Kim, Jong Hun;Yoon Park, Jung Han;Kim, Jong-Eun;Lee, Ki Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.9
    • /
    • pp.1379-1386
    • /
    • 2020
  • Acne is a chronic skin disease that typically occurs in the teens and twenties, and its symptoms vary according to age, sex, diet, and lifestyle. The condition is characterized by hyperproliferation of keratinocytes in the epidermis, sebum overproduction, excessive growth of Propionibacterium acnes, and P. acnes-induced skin inflammation. Interleukin (IL)-1α and IL-6 are predominant in the inflammatory lesions of acne vulgaris. These cytokines induce an inflammatory reaction in the skin in the presence of pathogens or stresses. Moreover, IL-1α accelerates the production of keratin 16, which is typically expressed in wounded or aberrant skin, leading to abnormalities in architecture and hyperkeratinization. Orobol (3',4',5,7-tetrahydroxyisoflavone) is a metabolite of genistein that inhibited the P. acnes-induced increases in IL-6 and IL-1α levels in human keratinocytes (HaCaTs) more effectively compared with salicylic acid. In addition, orobol decreased the IL-1α and IL-6 mRNA levels and inhibited the phosphorylation of inhibitor of kappa-B kinase, nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha, and mitogen-activated protein kinase induced by P. acnes. Finally, the expression of Ki67 was decreased by orobol. Thus, orobol ameliorated the inflammation and hyperkeratinization induced by heat-killed P. acnes and thus has potential for use in functional foods and cosmetics.

Anticancer Activity of Extremely Effective Recombinant L-Asparaginase from Burkholderia pseudomallei

  • Darwesh, Doaa B.;Al-Awthan, Yahya S.;Elfaki, Imadeldin;Habib, Salem A.;Alnour, Tarig M.;Darwish, Ahmed B.;Youssef, Magdy M.
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.5
    • /
    • pp.551-563
    • /
    • 2022
  • L-asparaginase (E.C. 3.5.1.1) purified from bacterial cells is widely used in the food industry, as well as in the treatment of childhood acute lymphoblastic leukemia. In the present study, the Burkholderia pseudomallei L-asparaginase gene was cloned into the pGEX-2T DNA plasmid, expressed in E. coli BL21 (DE3) pLysS, and purified to homogeneity using Glutathione Sepharose chromatography with 7.26 purification fold and 16.01% recovery. The purified enzyme exhibited a molecular weight of ~33.6 kDa with SDS-PAGE and showed maximal activity at 50℃ and pH 8.0. It retained 95.1, 89.6%, and 70.2% initial activity after 60 min at 30℃, 40℃, and 50℃, respectively. The enzyme reserved its activity at 30℃ and 37℃ up to 24 h. The enzyme had optimum pH of 8 and reserved 50% activity up to 24 h. The recombinant enzyme showed the highest substrate specificity towards L-asparaginase substrate, while no detectable specificity was observed for L-glutamine, urea, and acrylamide at 10 mM concentration. THP-1, a human leukemia cell line, displayed significant morphological alterations after being treated with recombinant L-asparaginase and the IC50 of the purified enzyme was recorded as 0.8 IU. Furthermore, the purified recombinant Lasparaginase improved cytotoxicity in liver cancer HepG2 and breast cancer MCF-7 cell lines, with IC50 values of 1.53 and 18 IU, respectively.

Ethanol Extracts from the Roots of Reed Prevent Skin Hyperpigmentation, Wrinkle Formation and Dryness

  • Sung Hyeok Kim;Sohee Jang;Hyun Jung Koo;Seung Namkoong;Sungsil Hong;Mi-Ja Kim;Chang Woo Ha;Hyosun Lim;Youn Kyu Kim;Eun-Hwa Sohn
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2021.04a
    • /
    • pp.49-49
    • /
    • 2021
  • The roots of reed (Phragmites australis) were used in traditional medicine to treat respiratory problems, including symptoms such as high fever and cough. In this study, we identified the active ingredient from 70% EtOH reed root extract, and evaluated the whitening, wrinkle improvement and moisturizing effects. The content of p-coumaric acid, the active ingredient of the roots of P. australis, was slightly lower in 70% EtOH extract than in 100% EtOH extract. However, 70% EtOH reed root extract showed similar or higher effect in reducing power, DPPH, hydrogen peroxide scavenging, and nitric oxide scavenging activity compared to 100% EtOH extract. Moreover, 70% EtOH reed root extract markedly inhibited melanogenesis in B16F10 cells treated with α-melanocyte-stimulating hormone. 70% EtOH reed root extract significantly inhibited the mRNA expression of matrix metalloproteinase-1 (MMP-1) and reduced elastase activity in HDF human dermal fibroblasts. In addition, 70% EtOH reed root extract ameliorated hyaluronic acid synthase-2 (HAS-2) expression induced by ultraviolet B (UVB) stimulation in HaCaT keratinocytes. The results of this study suggest that 70% EtOH reed root extract has potential as a functional cosmetic material related to whitening, wrinkle improvement, and moisturizing.

  • PDF

Genotoxicity and Cytotoxicity in Human Cancer and Normal Cell Lines of the Extracts of Rhododendron brachycarpum D. Don leaves (만병초 잎 추출물의 유전 독성과 사람의 암세포주 등에 대한 세포독성)

  • Byun, Kyoung-Sup;Lee, Young-Woo;Jin, Hyou-Ju;Lee, Mi-Kyoung;Lee, Hyeon-Yong;Lee, Kun-Jae;Heo, Moon-Young;Yu, Chang-Yeon;Lee, Jin-Ha
    • Korean Journal of Medicinal Crop Science
    • /
    • v.13 no.4
    • /
    • pp.199-205
    • /
    • 2005
  • This study was carried out to investigate the effect of 70% ethanol extract and each fraction from Rhododendron brachycarpum D. Don leaves on cytotoxicity, anticancer, genotoxicity and immunological activity in vitro bioassay. Cytotoxicity for human normal cells (HEL299 and Chang) of the samples was shown below 35% in 0.5 mg/ml concentration of samples except aqueous fraction by SRB assay. DNA damage on the Chang cell of the samples alone in comet assay was observed very weak damage activity even in high concentration (1 mg/ml) of the samples. The anticancer effect of the samples on human cancer cell lines (A549, AGS, Hep3B, MCF7) was indicated that the cancer cells were inhibited gradually in proportion to the increase of the concentration of the samples by MTT assay. The growth of the Raji and Jurkat cells were hastened by adding butanol fraction among the samples. In the genotoxicity on $H_2O_2-induced$ DNA damage in Chang cells using alkaline comet assay, most of samples were shown a strong protective activity from DNA OTM values.

Induction of G2/M Arrest and Apoptosis by the Methanol Extract of Typha orientalis in Human Colon Adenocarcinoma HT29 Cells (포황 메탄올 추출물에 의한 인체 대장암 세포주 HT29의 G2/M Arrest 및 Apoptosis 유발)

  • Jin, Soojung;Yun, Seung-Geun;Oh, You Na;Lee, Ji-Young;Park, Hyun-Jin;Jin, Kyong-Suk;Kwon, Hyun Ju;Kim, Byung Woo
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.4
    • /
    • pp.425-432
    • /
    • 2013
  • Typha orientalis, also known as bulrush or cattail, is a perennial herbaceous plant found in freshwater wetlands and has been widely used in constructed wetlands for wastewater treatment. Recent data has revealed that SH21B, a mixture composed of seven herbs including T. orientalis, exhibited an anti-adipogenic activity by the inhibition of the expression of adipogenic regulators. However, the anti-cancer effect of T. orientalis and its molecular mechanisms remain unclear. In this study, we evaluated the anti-cancer effect and its mechanism in the methanol extract of T. orientalis (METO) on human colon carcinoma HT29 cells. It was found that METO treatment showed cytotoxic activity in a dose-dependent manner, and induced G2/M cell cycle arrest and apoptosis in HT29 cells. The induction of G2/M arrest by METO was associated with the up-regulation of phospho-Cdc2 (Tyr15), an inactive form of Cdc2 and the down-regulation of Cdc25c phosphatase. METO also induced tumor suppressor p53 and cyclin-dependent kinase inhibitor p21 (WAF1/CIP1) expression. In addition, METO-induced apoptosis was characterized by the proteolytic activation of caspase-3, degradation of poly ADP ribose polymerase (PARP), and up-regulation of death receptor FAS and pro-apoptotic Bax expression. Collectively, these results indicate that the cell cycle inhibition and apoptosis induction of METO in HT29 cells allows for the possibility of its use in anti-cancer therapies.

Characterization of Phosphoinositide-3-kinase, Class 3 (PIK3C3) Gene and Association Tests with Quantitative Traits in Pigs

  • Kim, J.H.;Choi, B.H.;Lim, H.T.;Park, E.W.;Lee, S.H.;Seo, B.Y.;Cho, I.C.;Lee, J.G.;Oh, S.J.;Jeon, J.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.12
    • /
    • pp.1701-1707
    • /
    • 2005
  • This study deals with the characterization of porcine PIK3C3 and association tests with quantitative traits. PIK3C3 belongs to the class 3 PI3Ks that participate in the regulation of hepatic glucose output, glycogen synthase, and antilipolysis in typical insulin target cells such as those in the such as liver, muscle system, and fat. On the analysis of full-length mRNA sequence, the length of the PIK3C3 CDS was recorded as 2,664 bps. As well, nucleotide and amino acid identities between human and pig subjects were 92% and 99%, respectively. Five SNPs were detected over 5 exons. We performed genotyping by using a SNP C2604T on exon24 for 145 F$_2$ animals (from a cross between Korean native boars and Landrace sows) by PCR-RFLP analysis with Hpy8I used to investigate the relationship between growth and fat depot traits. In the total association analysis, which doesn' consider transmission disequilibrium, the SNP showed a significant effect (p<0.05) on body weight and carcass fat at 30 weeks of age as well as a highly significant effect (p<0.01) on back fat. In an additional sib-pair analysis, C allele still showed positive and significant effects (p<0.05) on back fat thickness and carcass fat. Moreover, the effects of C allele on the means of within-family components for carcass fat and back fat were estimated as 2.76 kg and 5.07 mm, respectively. As a result, the SNP of porcine PIK3C3 discovered in this study could be utilized as a possible genetic marker for the selection of pigs that possess low levels of back fat and carcass fat at the slaughter weight.

The Immuno-Modulatory and Antitumor Effects of Crude Polysaccharides Extracted from Tremella fuciformis (흰목이(Tremella fuciformis)에서 추출한 조다당류의 면역 활성 및 항암 효과)

  • Oh, Yun-Hee;Kim, Sang-Beom;Lee, Gun-Woo;Kim, Hye-Young;Shim, Mi-Ja;Rho, Hyun-Su;Lee, Hyun-Sook;Lee, Min-Woong;Lee, U-Youn;Lee, Tae-Soo
    • The Korean Journal of Mycology
    • /
    • v.34 no.2
    • /
    • pp.105-111
    • /
    • 2006
  • Tremella fuciformis, one of edible and medicinal mushroom belonging to Tremellaceae of Basidiomycota, has been known to have a curative effect on sarcoma 180 of mice and lowering high blood pressure of human beings. Neutral salt soluble [0.9% NaCl (Fr. NaCl)], hot water soluble (Fr. HW) and methanol soluble (Fr. MeOH) substances were extracted from Tremella fuciformis. In vitro cytotoxicity tests, Fr. HW and Fr. NaCl were not cytotoxic against cancer cell lines such as NIH3T3, Sarcoma 180, and HT-29 at the concentration of $2000{\mu}g/ml$, while Fr. MeOH was cytotoxic to NIH3T3 and Sarcoma 180. Intraperitoneal injection with Fr. NaCl showed antitumor effect with life prolongation of 53% in mice inoculated with Sarcoma 180. Fr. NaCl improved the immunopotentiation activity of B lymphocyte by increasing the alkaline phosphatase activity by $3.0{\sim}8.1$ folds, respectively. Intraperitoneal injection with Fr. NaCl increased the numbers of peritoneal exudated cells and circulating leukocytes by 7.4 folds and 1.6 folds, respectively, than in the control group. The antitumor effect of T. fuciformis against Sarcoma 180 of mice was likely due to immunopotentiation activity.

Efficacy and Safety Evaluation of an Air Sterilizer Equipped With an Electrolytic Salt Catalyst for the Removal of Indoor Microbial Pollutants (염촉매 전기분해 공기살균기의 효능 평가)

  • Sun Nyoung Yu;Ho-Yeon Jeon;Bu Kyung Kim;Ae-Li Kim;Kyung Il Jung;Gye Rok Jeon;Soon Cheol Ahn
    • Journal of Life Science
    • /
    • v.34 no.7
    • /
    • pp.500-508
    • /
    • 2024
  • Recently, there has been increasing interest in enhancing the indoor air quality, particularly in response to the growing utilization of public facilities. The focus of this study was on assessing the efficacy and safety of an air sterilizer equipped with electrolytic salt catalysts. To that end, we evaluated the antimicrobial activity of the vapor spraying from the air sterilizer and its cytotoxicity in condensed form on human cell lines (HaCaT, BEAS-2B, and THP-1). Against the test organisms, which comprised five bacterial strains (Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, Salmonella typhimurium) and one fungal strain (Candida albicans), the air sterilizer exhibited relatively high antimicrobial activities ranging from 10.89 to 73.98% following 1 and 3 hr of vapor spraying, which were notably time-dependent. Importantly, cytotoxicity assessments on human cells indicated no significant harmful effect even at a 1.0% concentration. Comprehensive safety evaluations included morphological observations, gene expression (Bcl-2, Bax) tests, and FACS analysis of intracellular ROS levels. Consistent with previous cytotoxicity findings, these estimates demonstrated no significant changes, highlighting the air sterilizer's safety and antimicrobial activities. In a simulated 20-hr operation within an indoor environment, the air sterilizer not only showed an 89.4% removal of total bacteria but also a 100.0% removal of Escherichia sp. and fungi. This research outlines the potential of the developed electrolytic salt catalyst air sterilizer to effectively remove indoor microbial pollutants without compromising human safety, underscoring the solution that it offers for improving indoor air quality.