DOI QR코드

DOI QR Code

Anticancer Activity of Extremely Effective Recombinant L-Asparaginase from Burkholderia pseudomallei

  • Darwesh, Doaa B. (Department of Biology, Faculty of Science, Tabuk University) ;
  • Al-Awthan, Yahya S. (Department of Biology, Faculty of Science, Tabuk University) ;
  • Elfaki, Imadeldin (Biochemistry Department, Faculty of Science, Tabuk University) ;
  • Habib, Salem A. (Biochemistry Department, Faculty of Science, Tabuk University) ;
  • Alnour, Tarig M. (Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, Tabuk University) ;
  • Darwish, Ahmed B. (Zoology Department, Faculty of Science, Suez University) ;
  • Youssef, Magdy M. (Biochemistry Division, Chemistry Department, Faculty of Science, Mansoura University)
  • Received : 2021.12.31
  • Accepted : 2022.03.25
  • Published : 2022.05.28

Abstract

L-asparaginase (E.C. 3.5.1.1) purified from bacterial cells is widely used in the food industry, as well as in the treatment of childhood acute lymphoblastic leukemia. In the present study, the Burkholderia pseudomallei L-asparaginase gene was cloned into the pGEX-2T DNA plasmid, expressed in E. coli BL21 (DE3) pLysS, and purified to homogeneity using Glutathione Sepharose chromatography with 7.26 purification fold and 16.01% recovery. The purified enzyme exhibited a molecular weight of ~33.6 kDa with SDS-PAGE and showed maximal activity at 50℃ and pH 8.0. It retained 95.1, 89.6%, and 70.2% initial activity after 60 min at 30℃, 40℃, and 50℃, respectively. The enzyme reserved its activity at 30℃ and 37℃ up to 24 h. The enzyme had optimum pH of 8 and reserved 50% activity up to 24 h. The recombinant enzyme showed the highest substrate specificity towards L-asparaginase substrate, while no detectable specificity was observed for L-glutamine, urea, and acrylamide at 10 mM concentration. THP-1, a human leukemia cell line, displayed significant morphological alterations after being treated with recombinant L-asparaginase and the IC50 of the purified enzyme was recorded as 0.8 IU. Furthermore, the purified recombinant Lasparaginase improved cytotoxicity in liver cancer HepG2 and breast cancer MCF-7 cell lines, with IC50 values of 1.53 and 18 IU, respectively.

Keywords

Acknowledgement

The financial support by the Deanship of Scientific Research (Project Number 0042-S1441) University of Tabuk, Saudi Arabia is gratefully acknowledged.

References

  1. Bhojwani D, Yang JJ, Pui CH. 2015. Biology of childhood acute lymphoblastic leukemia. Pediatr. Clin. North Am. 62: 47-60. https://doi.org/10.1016/j.pcl.2014.09.004
  2. Youssef MM. and Al-Omair MA. 2008. Cloning, purification, characterization, and immobilization of l-asparaginase from E. coli W3110. Asian J. Biochem. 3: 337-350. https://doi.org/10.3923/ajb.2008.337.350
  3. Ganeshan Shakambari, Anand Kumar Birendranarayan, Maria Joseph Angelaa Lincy, Sameer Kumar Rai, Quazi Taushif Ahamed, et al. 2016. Hemocompatible glutaminase free L-asparaginase from marine Bacillus tequilensis PV9W with anticancer potential modulating p53 expression. RSC Adv. 6: 25943-25951. https://doi.org/10.1039/C6RA00727A
  4. Krishnapura PR, Belur PD, Subramanya S. 2016. A critical review on properties and applications of microbial L-asparaginases. Crit. Rev. Microbiol. 42: 720-737.
  5. Dhankhar, R, Gupta V, Kumar S, Kapoor RK, Gulati P. 2020. Microbial enzymes for deprivation of amino acid metabolism in malignant cells: a biological strategy for cancer treatment. Appl. Microbiol. Biotechnol. 104: 2857-2869. https://doi.org/10.1007/s00253-020-10432-2
  6. da Silva LS, Doonan LB, Pessoa A Jr, de Oliveira MA, Long PF. 2021. Structural and functional diversity of asparaginases: overview and recommendations for a revised nomenclature. Biotechnol. Appl. Biochem. 69: 503-513.
  7. Aisha A, Zia MA, Asger M, Muhammad F. 2020. L-asparaginase, acrylamide quenching enzyme production from leaves of Tamarindus Indica and seeds of Vigna radiata- Fabaceae. Pakistan J. Bot. 1: 243-249.
  8. Lubkowski J, Wlodawer A. 2021. Structural and biochemical properties of L-asparaginase. FEBS J. 288: 4183-4209. https://doi.org/10.1111/febs.16042
  9. Doozandeh-Juibari A, Ghovvati S, Vaziri HR, Sohani MM, Pezeshkian Z. 2020. Cloning, expression, purification, and evaluation of the biological properties of the recombinant human growth hormone (hGH) in Escherichia coli. Int. J. Pept. Res. Ther. 26: 487-495. https://doi.org/10.1007/s10989-019-09854-y
  10. Sanches M, Krauchenco S, Polikarpov I. 2007. Structure, substrate complexation and reaction mechanism of bacterial asparaginases. Curr. Chem. Biol. 1: 75-86. https://doi.org/10.2174/2212796810701010075
  11. Silaban S, Gaffar S, Simorangkir M, Maksum IP, Subroto T. 2019. Effect of IPTG concentration on recombinant human prethrombin-2 expression in Escherichia coli BL21 (DE3) arctic express. IOP Conf. Ser. Earth Environ. Sci. 217: 1-6.
  12. Ran T, Jiao L, Wang W, Chen J, Chi H, Lu Z, et al. 2021. Structures of l-asparaginase from Bacillus licheniformis reveal an essential residue for its substrate stereoselectivity. J Agric. Food Chem. 69: 223-231. https://doi.org/10.1021/acs.jafc.0c06609
  13. Pritsa AA, Kyriakidis DA. 2001. L-asparaginase of Thermus thermophilus: purification, properties, and identification of essential amino acids for its catalytic activity. Mol. Cel. Biochem. 216: 93-101. https://doi.org/10.1023/A:1011066129771
  14. Youssef MM. 2015. Overexpression, purification, immobilization, and characterization of thermophilic lipase from Burkholderia pseudomallei. Am. J. Microbiol. Biotechnol. 2: 82-91.
  15. Sambrook J, Fritsch ER, Maniatis T. 1989. Molecular Cloning: A Laboratory Manual (2nd Ed.). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
  16. Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
  17. Ismail MA, Youssef MM, Arafa RK, Al-Shihry SS, El-Sayed WM. 2017. Synthesis and antiproliferative activity of monocationic arylthiophene derivatives. Eur. J. Med. Chem. 126: 789-798. https://doi.org/10.1016/j.ejmech.2016.12.007
  18. Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, et al. 2008. Phylogeny. fr: robust phylogenetic analysis for the nonspecialist. Nucleic Acids Res. 36: 465-469.
  19. Milburn D, Laskowski RA, Thornton JM. 1998. Sequences annotated by structure: a tool to facilitate the use of structural information in sequence analysis. Protein Eng. 11: 855-859. https://doi.org/10.1093/protein/11.10.855
  20. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, et al. 2018. SWISS-MODEL: homology modeling of protein structures and complexes. Nucleic Acids Res. 2: 46(W1): W296-W303. https://doi.org/10.1093/nar/gky427
  21. Saeed H, Soudan H, El-Sharkawy A, Farag A, Embaby A, Ataya F. 2018. Expression and functional characterization of Pseudomonas aeruginosa recombinant L-asparaginase. Protein J. 37: 461-471. https://doi.org/10.1007/s10930-018-9789-3
  22. Wriston JC. 1985. Asparaginase. Methods Enzymol. 113: 608-610. https://doi.org/10.1016/S0076-6879(85)13082-X
  23. Bradford M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1006/abio.1976.9999
  24. Tong WH, Pieters R, de Groot-Kruseman HA, Hop WC, Boos J, Tissing WJ, et al. 2014. The toxicity of very prolonged courses of PEG L-asparaginase or Erwinia L-asparaginase concerning L-asparaginase activity, with a special focus on dyslipidemia. Haematologica 99: 1716-1721. https://doi.org/10.3324/haematol.2014.109413
  25. Tabandeh MR andv Aminlari, M. 2009. Synthesis, physicochemical and immunological properties of oxidized inulin-L-asparaginase bioconjugate. J. Biotechnol. 141: 189-195. https://doi.org/10.1016/j.jbiotec.2009.03.020
  26. Michalska K, Jaskolski M. 2006. Structural aspects of L-asparaginases, their friends and relation. Acta Biochim. Pol. 53: 627-640. https://doi.org/10.18388/abp.2006_3291
  27. Jia M, Xu M, He B, Rao Z. 2013. Cloning, expression, and characterization of L-asparaginase from a newly isolated Bacillus subtilis B11-06. J. Agric. Food Chem. 61: 9428-9434 https://doi.org/10.1021/jf402636w
  28. Yoshimoto T, Nishimura H, Saito Y, Sakurai K, Kamisaki Y, Wada H, et al. 1986. Characterization of polyethylene glycoL-modified L-asparaginase from Escherichia coli and its application to therapy for leukemia. Jpn. J. Cancer. Res. 77: 1264-1270.
  29. Li LZ, Xie TH, Li HJ, Qing C, Zhang GM, Suna MS. 2007. Enhancing the thermostability of E. coli L-asparaginase II by substitution with the pro in predicted hydrogen-bonded turn structures. Enzyme. Microb. Technol. 41: 523-527. https://doi.org/10.1016/j.enzmictec.2007.04.004
  30. El-Bessoumy AA, Sarhan M, Mansour J. 2004. Production, isolation, and purification of L-asparaginase from Pseudomonas aeruginosa 50071 using solid-state fermentation. J. Biochem. Mol. Biol. 37: 387-393.
  31. Sinclair K, Jon P, David W, Bonthron T. 1994. The ASP1 gene of Saccharomyces cerevisiae, encoding the intracellular isozyme of l-asparaginase. Gene 144: 37-43. https://doi.org/10.1016/0378-1119(94)90200-3
  32. Narta UK, Kanwar SS, Azmi W. 2007. Pharmacological and clinical evaluation of L-asparaginase in the treatment of leukemia. Crit. Rev. Oncol. Hematol. 61: 208-221. https://doi.org/10.1016/j.critrevonc.2006.07.009
  33. Nomme J, Su Y, Lavie A. 2014. Elucidation of the specific function of the conserved threonine triad responsible for human L-Asparaginase autocleavage and substrate hydrolysis. J. Mol. Biol. 426: 2471-2485. https://doi.org/10.1016/j.jmb.2014.04.016
  34. Sugimoto H, Odani S, Yamashita S. 1998. Cloning and expression of cDNA encoding rat liver 60-kDa lysophospholipase containing an L-asparaginase-like region and ankyrin repeat. J. Biol. Chem. 273: 12536-12542. https://doi.org/10.1074/jbc.273.20.12536
  35. Oinonen C, Tikkanen R, Rouvinen J, Peltonen L. 1995. Three-dimensional structure of human lysosomal aspartylglucosaminidase. Nat. Struct. Biol. 2: 1102-1108. https://doi.org/10.1038/nsb1295-1102
  36. Saito S, Ohno K, Sugawara K, Suzuki T, Togawa T, Sakuraba H. 2008. Structural basis of aspartylglucosaminuria. Biochem. Biophys. Res. Commun. 377: 1168-1172. https://doi.org/10.1016/j.bbrc.2008.10.142
  37. Bush LA, Herr JC, Wolkowicz M, NE Shore AC, Flickinger J. 2002. A novel L-asparaginase- like protein is a sperm autoantigen in rats. Mol. Reprod. Dev. 62: 233-247. https://doi.org/10.1002/mrd.10092
  38. Evtimova V, Zeillinger R, Kaul S, Weidle UH. 2004. Identification of CRASH, a gene deregulated in gynecological tumors. Int. J. Oncol. 24: 33-41.
  39. Zuo S, Zhang T, Jiang B, Mu W. 2015. Reduction of acrylamide level through blanching with treatment by an extremely thermostable L-Asparaginase during French fries processing. Extremophiles 19: 841-851. https://doi.org/10.1007/s00792-015-0763-0
  40. Tikkanen R, Riikonen A, Oinonen C, Rouvinen R, Peltonen L. 1996. Functional analyses of active site residues of human lysosomal aspartylglucosaminidase: implications for catalytic mechanism and autocatalytic activation. EMBO J. 15: 2954-2960. https://doi.org/10.1002/j.1460-2075.1996.tb00658.x
  41. Chohan SM, Rashid N, Sajed M, Imanaka T. 2019. Pcal_0970: an extremely thermostable L-Asparaginase from Pyrobaculum calidifontis with no detectable glutaminase activity. Folia Microbiol. (Praha) 64: 313-320. https://doi.org/10.1007/s12223-018-0656-6
  42. Yim S, Kim M. 2019. Purification and characterization of thermostable L-Asparaginase from Bacillus amyloliquefaciens MKSE in Korean soybean paste. LWT-Food Sci. Technol. 109: 415-421. https://doi.org/10.1016/j.lwt.2019.04.050
  43. Raetz EA, Salzer, WL. 2010. Tolerability and efficacy of L-Asparaginase therapy in pediatric patients with acute lymphoblastic leukemia. J. Pediatr. Hematol. Oncol. 32: 554-563. https://doi.org/10.1097/MPH.0b013e3181e6f003
  44. Stock W, Douer D, DeAngelo,DJ, Arellano M, Advani A, Damon L, et al. 2011. Prevention and management of L-asparaginase/ peg L-asparaginase-associated toxicities in adults and older adolescents: recommendations of an expert panel. Leuk. Lymphoma 52: 2237-2253. https://doi.org/10.3109/10428194.2011.596963
  45. Parsons SK, Skapek SX, Neufeld EJ, Kuhlman C, Young M, Donnelly LM, et al. 1997. L-asparaginase-associated lipid abnormalities in children with acute lymphoblastic leukemia. Blood 89: 1886-1895 https://doi.org/10.1182/blood.v89.6.1886
  46. Swain AL, Jakolski M, Housset D, Rao JK, Woldawer A. 1993. Crystal structure of Escherichia coli L-asparaginase, an enzyme used in cancer therapy. Proc. Natl. Acad. Sci. USA 90: 1474-1478. https://doi.org/10.1073/pnas.90.4.1474
  47. Ding Y, Li Z, Broome JD. 2005. Epigenetic changes in the repression and induction of asparagine synthetase in human leukemic cell lines. Leukemia 19: 420-426. https://doi.org/10.1038/sj.leu.2403639
  48. Fine BM, Kaspers GJL, HoM, Loonen AH, Boxer LM. 2005. A genome wide view of the in vitro response to L-asparaginase in acute lymphoblastic leukemia. Cancer Res. 65: 291-299. https://doi.org/10.1158/0008-5472.291.65.1