• Title/Summary/Keyword: hot melt

Search Result 168, Processing Time 0.024 seconds

Characteristics on the Hot Extrusion of Semi-Solid Al-Zn-Mg Alloy (반용융 Al-Zn-Mg합금의 고온 압출 시 특성 평가)

  • Cho, Kuk-Rae;Yeom, Jong-Taek;Shim, Sung-Yong;Lim, Su-Gun;Park, Nho-Kwang;Kim, Jeoung-Han
    • Transactions of Materials Processing
    • /
    • v.16 no.5 s.95
    • /
    • pp.391-395
    • /
    • 2007
  • Semi-solid Al-Zn-Mg alloys were produced by using a cooling plate method in order to investigate the extrudability. Al melt was poured on cooling plate which was adjusted at $60^{\circ}$ with respect to the horizontal plane, and the melt was cooled by water circulation underneath. Obtained Semi-solid feedstock has globular microstructure but also contains considerable amount of gas pore. Due to the pore, tensile elongation of the semi-solid feedstock was very low and it doesn't show yield point phenomenon. Isothermal hot extrusion was carried out using at $400^{\circ}C$ with a ram speed of 1mm/sec and an extrusion ratio of 25:1. The extruded bar show noticeably improved tensile ductility and strength because pore volume fraction decreased from 5% to 0.8% after extrusion. Mechanical properties of the semi-solid extruded bar were compared with that of commercial casting alloy.

Measurement of the intrinsic speed of sound in a hot melt ceramic slurry for 3D rapid prototyping with inkjet technology (3차원 잉크젯 쾌속 조형법을 위한 세라믹 상변화 잉크의 음속측정)

  • Shin, Dong-Youn
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.4
    • /
    • pp.892-898
    • /
    • 2008
  • 3D rapid prototyping is the manufacturing technology to fabricate a prototype with the data stored in a computer, which differs from conventional casting technology in terms of an additive process. Various 3D rapid prototyping techniques such as stereolithograpy. fused deposition modeling. selective laser sintering, laminated object manufacturing have been developed but among them, 3D inkjet printing has a unique feature that materials could be jetted to directly form the body of a prototype, which could be a finished product functionally and structurally. However, this needs ink with a high solid content, which tends to increase the dynamic viscosity of ink. The increase of ink viscositytends to restrict the jettable range of ink and hence the jetting conditions should be optimized. The intrinsic speed of sound in a hot melt ink with ceramic nanoparticles dispersed is one of key components to determine the jettable range of ink. In this paper, the way to measure the intrinsic speed of sound in a hot melt ceramic ink is proposed and its influence on the jetting condition is discussed.

Physicochemical Characterization of Extrudate Solid Formulation of Angelica gigas Nakai Prepared by Hot Melt Extrusion Process

  • Azad, Md Obyedul Kalam;Cho, Hyun Jong;Koo, Ja Seong;Park, Cheol Ho;Kang, Wie Soo
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.04a
    • /
    • pp.72-72
    • /
    • 2018
  • The root of Angelica gigas Nakai (AGN) is used as a traditional herbal medicine in Korea for the treatment of many diseases. However, a major challenge associated with the usage of the active compounds from AGN is their poor water solubility. Therefore, this work aimed to enhance the solubility of active compounds by a chemical (viz. surfactant) and physical (hot melt extrusion) crosslinking method (CPC). Infrared Fourier transform spectroscopy (FT-IR) revealed multiple peaks in extrudate solids representing new functional groups including carboxylic acid, alkynes and benzene derivatives. Differential scanning calorimetry (DSC) analysis of the extrudate showed lower glass transition temperature (Tg) and lower enthalpy (${\Delta}H$) (Tg: $43^{\circ}C$; ${\Delta}H$: <6 (J/g)) compared to the non-extrudate (Tg $68.5^{\circ}C$; ${\Delta}H$: 123.2) formulations. X-ray powder diffraction (XRD) analysis revealed amorphization of crystal materials in extrudate solid. In addition, nanonization, enhanced solubility and higher extraction of phenolic compounds were achieved in the extrudate solid. Among the different extrudates, acetic acid- and Span 80-mediated formulations showed superior extractions. We conclude that the CPC method successfully enhanced the production of amorphous nano dispersions from extrudate solid formulations.

  • PDF

A technique for fabricating abutment replica with hot melt adhesive material to minimize residual cement in implant restoration: a case report (임플란트 보철 합착 시 잔여 시멘트 최소화를 위해 열가소성 접착제를 이용한 복제 지대주 제작 방법: 증례보고)

  • Seo, Chi-Won;Han, A-Reum;Seo, Jae-Min;Lee, Jung-Jin
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.32 no.3
    • /
    • pp.240-245
    • /
    • 2016
  • Removal of excess cement is important to prevent biological complication in cementation of implant restoration with subgingival margin. It can be difficult to completely remove excess cement. Several techniques have been introduced to minimize excess cement using abutment replica. In this case report, a simple method for making abutment replica with hot melt adhesive material in dental office was described. This technique is simple and effective because it can be used for pre-fabricated or custom abutment without additional laboratory procedure. In addition, it can minimize excess cement after cementation of implant restoration.

Enhancement of Solubility and Nanonization of Phenolic Compound in Extrudate from Angelica gigas Nakai by Hot Melt Extrusion using Surfactant (유화제 첨가 용융압출을 이용한 참당귀 성형체의 페놀성분 나노화 및 용해도 향상)

  • Azad, Md Obyedul Kalam;Cho, Hyun Jong;Go, Eun Ji;Lim, Jung Dae;Park, Cheol Ho;Kang, Wie Soo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.26 no.4
    • /
    • pp.317-327
    • /
    • 2018
  • Background: The root of Angelica gigas Nakai is used as a traditional herbal medicine in Korea for the treatment of many diseases. However, the poor water solubility of the active components in A. gigas Nakai is a major obstacle to its bioavailability. Methods and Results: This work aimed at enhancing the solubility of the active compounds of A. gigas Nakai by a chemical (using a surfactant) and physical (hot melt extrusion, HME) crosslinking method. Fourier transform infrared spectroscopy revealed multiple peaks in the case of the extrudate solids, attributable to new functional groups including carboxylic acid, alkynes, and benzene derivatives. Differential scanning calorimetry analysis showed that the extrudate soilid had a lower glass transition temperature ($T_g$) and enthalpy (${\Delta}H$) ($T_g:43^{\circ}C$, ${\Delta}H$ : < 6 J/g) as compared to the non-extrudate ($T_g:68.5^{\circ}C$, ${\Delta}H:123.2$) formulations. X-ray powder diffraction analysis revealed the amorphization of crystalline materials in the extrudate solid. In addition, enhanced solubility (53%), nanonization (403 nm), and a higher amount of extracted phenolic compounds were achieved in the extrudate solid than in the non-extrudate (solubility : 36%, nanonization : 1,499 nm) formulation. Among the different extrudates, acetic acid and span 80 mediated formulations showed superior extractions efficiency. Conclusions: HME successfully enhanced the production of amorphous nano dispersions of phenolic compound including decursin from extrudate solid formulations.

An Enhanced Water Solubility and Antioxidant Effects of Seed and Pamace of Schisandra chinensis (Turcz.) Baill Formulation by HME (Hot-Melt Extrusion) (HME (Hot-Melt Extrusion)를 이용한 오미자 씨 및 박의 수용성 및 항산화 효과 향상)

  • Eun Ji Go;Min Ji Kang;Min Jun Kim;Jung Dae Lim;Young-Suk Kim;Jong-Min Lim;Min Jeong Cho;Tae Woo Oh;Seokho Kim;Kyeong Tae Kwak;Byeong Yeob Jeon
    • Herbal Formula Science
    • /
    • v.31 no.4
    • /
    • pp.215-230
    • /
    • 2023
  • Objectives : Schisandra chinensis (Turcz.) Baill contains many nutrients and exhibits high physiological functions. It has been shown that Schisandra seed and pamace contains more nutrients than fruits and thus have higher antioxidant efficacy. In this study, seed and pamace of Schisandra chinensis (Turcz.) Baill (SPSC) were treated with hot-melt extrudate (HME) extrusion to produce water-soluble nanoparticles. Methods : SPSC was treated with HME to prepare nanoparticles. In this process, excipients (hydroxypropyl methylcellulose, pullulan, 2-hydroxylpropyl-beta-cyclodextrin, lecithin) were added to prepare a hydrophilic polymer matrix. To compare and analyze the antioxidant effect and schizandrin content, total flavonoid content, total phenol content and ABTS assay were measured. To confirm the effect of increasing the water solubility of the particles, particle size and water solubility index measurements were performed. The molecular of the material was analyzed using Fourier transform infrared spectroscopy (FT-IR). Results : The particle size of HME extrudates decreased, while total phenols, flavonoids, schizandrin, antioxidant effect, and solubility increased. Through FT-IR, it was confirmed that the SPSC and the extrudate exhibit the same chemical properties. In addition, it was confirmed that when extracted with water, it exhibited a higher antioxidant effect than the ethanol extract. Conclusions : HME technology increased the solubility of SPSC, which are processing by-products, and improved their antioxidant effect to a higher degree. It was confirmed that SPSC could be used as an eco-friendly, high value-added material.

A Theory of Hot Gas Atomisation

  • Dunkley, J. J.;Fedorov, D.;Wolf, G.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.10-11
    • /
    • 2006
  • The use of hot gas in melt atomization has been widely reported, but little detailed experimental data on its precise effects and no satisfactory theory to explain them have been published. In this paper the authors present experimental data on the atomization of metals with gas at temperatures from ambient to 1000C, a semi-empirical equation relating particle size to gas temperature and flow rate, and an analysis of the gas dynamics of the atomization process that allows some insight into the process.

  • PDF

Microstructure and Tensile Property of Rapidly Solidified Al-Be alloy (급속응고한 Al-Be합금의 미세조직 및 인장특성)

  • Lee, In-Woo;Park, Hyun-Ho;Kim, Myung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.15 no.5
    • /
    • pp.459-468
    • /
    • 1995
  • For high performance aerospace structures, the properties of highest priority are low density, high strength, and high stiffness(modulus of elasticity). Addition of beryllium decrease the density of the aluminum alloy and increase the strength and the stiffness of the alloy. However it is very difficult to produce the Al-Be alloy having useful engineering properties by conventional ingot casting, because of the extremely limited solid solubility of beryllium in aluminum. So, rapid solidification processing is necessary to obtain extended solid solubility. In this study, rapidly solidified Al-6 at% Be alloy were prepared by twin roll melt spinning process and single roll melt spinning process. Twin roll melt spun ribbons were extruded at $450^{\circ}C$ with reduction in area of 25 : 1 after vacuum hot pressing at $550^{\circ}C and 375^{\circ}C$. The microstructure of melt spun ribbon exhibited a refined cellular microstructure with dispersed Be particles. As advance velocity of liquid/solid interface increase, the morphology of Be particle vary from rod-like type to spherical type and the crystal structure of Be particle from HCP to BCC. These microstructural characteristics of rapidly solidified Al-6at.%Be alloy were described on the basis of metastable phase diagram proposed by Perepezko and Boettinger. The extruded ribbon consisted of recrystallized grains dispersed with Be particles and exhibited improved tensile property compared with that of extruded ingot.

  • PDF

Preparation of Elastic Branched Copolyester for Toner Binder: Effects of Branching Agents (토너 바인더용 분지화된 탄성 폴리에스테르 공중합체의 합성: 분지제의 영향)

  • Roh, Hyung-Jin;Lim, Jong-Kwan;Lee, Dong-Ho;Yoon, Keun-Byoung
    • Polymer(Korea)
    • /
    • v.36 no.4
    • /
    • pp.440-447
    • /
    • 2012
  • The branched copolyester was synthesized and its molecular weight, $T_g$, 1/2 method temperature ($T_{1/2}$) and rheological properties were characterized for the application of toner binder. The linear copolyester had low molecular weight and melt elasticity obtained by dimethylterephthalate (DMT), ethylene glycol (EG) and 2,2-bis(4-(2-hydroxypropoxy) phenyl)propane (HPP). The branched copolyesters prepared with various branching agents such as 2-(hydroxymethyl)-2-ethylpropane-1,3-diol (trimethylol propane, TMP), 2,2-bi(hydroxymethyl)-1,3-propanediol (pentaerythritol, PER), 1,2,4-benzenetricarboxylic anhydride (trimellitic anhydride, TMA) and glycerol to improve the physical properties of the linear copolyester. The effect of branching agents on the molecular weight and melt elasticity of the branched copolyester was examined. The branched copolyesters prepared by adding over 15 mol% of branching agent showed relatively high molecular weight and melt elasticity, and $T_{1/2}$ value of $140^{\circ}C$. Therefore, the highly branched copolyesters were deemed suitable as a hot-melt toner of laser print process.

Thermoelectric Properties of n-type 90%$Bi_{2}Te_{3}+10% Bi_{2}Se_{3}$ Materials Prepared by Rapid Solidification Process and Hot Pressing (급속응고기술에 의한 n-type 90%$Bi_{2}Te_{3}+10% Bi_{2}Se_{3}$ 열간압축제의 열전특성)

  • 김익수
    • Journal of Powder Materials
    • /
    • v.3 no.4
    • /
    • pp.253-259
    • /
    • 1996
  • The efficiency of thermoelectric devices for different applications is known to depend on the thermoelectric effectiveness of the material which tends to grow with the increase of its chemical homogeneity. Thus an important goal for thermal devices is to obtain chemically homogeneous solid solutions. In this work, the new process with rapid solidification (melt spinning method) followed by hot pressing was investigated to produce homogeneous material. Characteristics of the material were examined with HRD, SEM, EPMA-line scan and bending test. Property variations of the materials were investigated as a function of variables, such as dopant ${CdCl}_{2}$ quantity and hot pressing temperature. Quenched ribbons are very brittle and consist of homogeneous $Bi_2Te_3$, ${Bi}_{2}{Se}_{3}$ solid solutions. When the process parameters were optimized, the maximum figure of merit was 2.038$\times$$10^{-3}K^{-4}. The bending strength of the material hot pressed at 50$0^{\circ}C$ was 8.2 kgf/${mm}^2$.

  • PDF