• Title/Summary/Keyword: hot carrier

Search Result 283, Processing Time 0.025 seconds

Photocurrent study on the splitting of the valence band and growth of $ZnIn_{2}Se_{4}$ single crystal thin film by hot wall epitaxy (Hot wall epitaxy(HWE)법에 의한 $ZnIn_{2}Se_{4}$ 단결정 박막 성장과 가전자대 갈라짐에 대한 광전류 연구)

  • Hong, Kwang-Joon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.5
    • /
    • pp.217-224
    • /
    • 2008
  • A stoichiometric mixture of evaporating materials for $ZnIn_2Se_4$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $ZnIn_2Se_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperatures were $630^{\circ}C$ and $400^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $ZnIn_2Se_4$ single crystal thin films measured from Hall effect by van der Pauw method are $9.41\times10^{16}cm^{-3}$ and $292cm^2/v{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the $ZnIn_2Se_4$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=1.8622eV-(5.23\times10^{-4}eV/K)T^2/(T+775.5K)$. The crystal field and the spin-orbit splitting energies for the valence band of the $ZnIn_2Se_4$ have been estimated to be 182.7 meV and 42.6 meV, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}_5$ states of the valence band of the $ZnIn_2Se_4/GaAs$ epilayer. The three photo current peaks observed at 10 K are ascribed to the $A_{1}-$, $B_{1}-exciton$ for n = 1 and $C_{27}-exciton$ peaks for n = 27.

Growth and characterization ofZnIn$_2S_4$ single crystal thin film using hot wall epitaxy method (Hot Wall Epitaxy(HWE)에 의한 ZnIn$_2S_4$ 단결정 박막 성장과 특성)

  • 최승평;홍광준
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.4
    • /
    • pp.138-147
    • /
    • 2001
  • The stochiometric mixtures mixture of evaporating materials for the $ZnIn_{2}S_{4}$ single crystal thin film was prepared from horizontal furnace. To obtain the $ZnIn_{2}S_{4}$ single crystal thin film, $ZnIn_{2}S_{4}$ mixed crystal was deposited on throughly etched semi-insulting GaAs(100) in the Hot Wall Epitaxy(HWE) system. The sourceand substrate temperature were $610^{\circ}C$ and $450^{\circ}C$, respectively and the growth rate of the $ZnIn_{2}S_{4}$ single crystal thin film was about 0.5$\mu\textrm{m}$/hr. The crystalline structure of $ZnIn_{2}S_{4}$ single crystal thin film was investigated by photoluminescence and double crystal X-ray diffraction (DCXD) measurement. The carrier density and mobility of $ZnIn_{2}S_{4}$ single crystal thin film measured from Hal effect by van der Pauw method are $8.51{\times}10^{17}{\textrm}{cm}^{-3}$, 291$\textrm{cm}^2$/V.s at $293^{\circ}$K, respectively. From the photocurrent spectrum by illumination of perpendicular light on the c-axis of the $ZnIn_{2}S_{4}$ single crystal thin film, we have found that the values of spin orbit splitting $\Delta$So and the crystal filed splitting DCr were 0.0148eV and 0.1678 eV at $10^{\circ}$K, respectively. From the photoluminescence measurement of $ZnIn_{2}S_{4}$ single crystal thin film, we observed free excition($E_{X}$) typically observed only in high quality crystal and neutral donor bound exicton ($D^{\circ}$, X) having very strong peak intensity. The full width at half maximum and binding energy of neutral donor bound excition were 9meV and 26meV, respectively. The activation energy of impurity measured by Haynes rule was 130meV.

  • PDF

The study of growth and characterization of CuGaSe$_2$ single crystal thin films by hot wall epitaxy (HWE(Hot wall epitaxy)에 의한 CuGaSe$_2$단결정 박막 성장과 특성에 관한 연구)

  • 홍광준;백형원
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.3
    • /
    • pp.189-198
    • /
    • 2000
  • The stochiometric mixture of evaporating materials for the $CuGaSe_2$single crystal thin films were prepared from horizontal furnace. Using extrapolation method of X-ray diffraction patterns for the polycrystal $CuGaSe_2$, it was found tetragonal structure whose lattice constant $a_0}$ and $c_0$ were 5.615 $\AA$ and 11.025 $\AA$, respectively. To obtains the single crystal thin films, $CuGaSe_2$mixed crystal was deposited on throughly etched GaAs(100) by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were $610^{\circ}C$ and $450^{\circ}C$ respectively, and the growth rate of the single crystal thin films was about 0.5$\mu\textrm{m}$/h. The crystalline structure of single crystal thin films was investigated by the double crystal X-ray diffraction (DCXD). Hall effect on this sample was measured by the method of van der Pauw and studied on carrier density and mobility depending on temperature. From Hall data, the mobility was likely to be decreased by pizoelectric scattering in the temperature range 30 K to 150 K and by polar optical scattering in the temperature range 150 K to 293 K. The optical energy gaps were found to be 1.68 eV for CuGaSe$_2$sing1e crystal thin films at room temperature. The temperature dependence of the photocurrent peak energy is well explained by the Varshni equation then the constants in the Varshni equation are given by $\alpha$ = $9.615{\times}10^{-4}$eV/K, and $\beta$ = 335 K. From the photocurrent spectra by illumination of polarized light of the $CuGaSe_2$single crystal thin films. We have found that values of spin orbit coupling $\Delta$So and crystal field splitting $\Delta$Cr was 0.0900 eV and 0.2498 eV, respectively. From the PL spectra at 20 K, the peaks corresponding to free bound excitons and D-A pair and a broad emission band due to SA is identified. The binding energy of the free excitons are determined to be 0.0626 eV and the dissipation energy of the acceptor-bound exciton and donor-bound exciton to be 0.0352 eV, 0.0932 eV, respectively.

  • PDF

Synthesis and Small Animal Brain PET Study of a Serotonin Receptor Radiotracer, 18F-Mefway (세로토닌 5-HT1A수용체 방사성 추적자 18F-Mefway의 합성과 소동물 뇌 PET 연구)

  • Ahn, Sung-Min;Hong, Tae-Kee;Ryu, Young-Hoon;Choi, Jae-Yong;Kim, Sung-Chul
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.11
    • /
    • pp.262-270
    • /
    • 2009
  • $^{18}F$-mefway has been developed as radioligand for serotonin receptor 5-$HT_{1A}$. The object of this study was to obtain the mefway precursor with the higher yield than previous method and to identify whether $^{18}F$-mefway can bind to 5-$HT_{1A}$ or not. from microPET imaging of small animal brain. Precursor was prepared by a modification of the reported procedure then [$^{18}F$] labeling was performed by adding $^{18}F$ ion at $130^{\circ}C$ in the hot cell for 30min. After purification of reaction mixture using alumina Sep-pak and HPLC, microPET images of small animal brain were determined. The chemical yield of precursor was increased from 9% to 34% using oxalyl chloride and LAH/diethylether. We synthesized a precursor which was successfully labeled with no-carrier-added $^{18}F$-by new synthetic route. This research suggest that $^{18}F$-mefway will be used a radiopharmaceutical for evaluation of central nerve system disorder as imaging a gent for 5-$HT_{1A}$ receptor.

Synthesis of High-Quality Single-Walled Carbon Nanotube Fibers by Vertical CVD (수직 가열로를 이용한 고순도 단일벽 탄소나노튜브 섬유의 합성)

  • Kim, Tae-Min;Song, Woo-Seok;Kim, Yoo-Seok;Kim, Soo-Youn;Choi, Won-Chel;Park, Chong-Yun
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.5
    • /
    • pp.377-384
    • /
    • 2010
  • Many routes have been developed for the synthesis of signle-walled carbon nanotubes (SWCNTs). We spun fibers of SWCNTs directly from vertical furnace using a liquid source of carbon and an iron-contained molecule. The solution was prepared by ethanol as a carbon source, in which ferrocene as a catalyst, thiophene were dissolved. It was then injected from the top of the furnace into hot zone with hydrogen as a carrier gas. We successfully synthesized high-quality SWCNTs by adjusting the various experimental conditions, such as concentration of ferrocene, solution injection rate, concentration of thiophene, and hydrogen flow rate. Measurement of Raman spectroscopy, scanning electron microscopy, and transmission electron microscopy were carried out to find the optimized conditions. The synthesized SWCNTs (1.16~1.64 nm) appeared a bundle structure and well-aligned parallel to the direction of furnace. These results also provide an simple way for high-quality SWCNTs mass production and fabricating direct spining SWCNTs fiber. It will allow one-step production of SWCNTs fiber with potentially excellent properties and wide-range applications.

Design of a Large-density MTP IP (대용량 MTP IP 설계)

  • Kim, YoungHee;Ha, Yoon-Kyu;Jin, Hongzhou;Kim, SuJin;Kim, SeungGuk;Jung, InChul;Ha, PanBong;Park, Seungyeop
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.161-169
    • /
    • 2020
  • In order to reduce the manufacturing cost of MCU chips used in applications such as wireless chargers and USB-C, compared to DP-EEPROM (Double Poly EEPROM), which requires 3 to 5 additional process masks, it is even more necessary MTP(Multi-Time Programmable), which is less than one additional mask and have smaller unit cell size. In addition, in order to improve endurance characteristics and data retention characteristics of the MTP memory cell due to E/P(Erase / Program) cycling, the distribution of the VTP(Program Threshold Voltage) and the VTE(Erase Threshold Voltage) needs to be narrow. In this paper, we proposed a current-type BL S/A(Bit-Line Sense Amplifier) circuit, WM(Write Mask) circuit, BLD(BL Driver) circuit and a algorithm, which can reduce the distribution of program and VT and erase VT, through compare the target current by performing the erase and program pulse of the short pulse several times, and if the current specification is satisfied, the program or erase operation is no longer performed. It was confirmed that the 256Kb MTP memory fabricated in the Magnachip semiconductor 0.13㎛ process operates well on the wafer in accordance with the operation mode.

Growth of $CuInSe_2$ single crystal thin film for solar cell development and its solar cell application (태양 전지용 $CuInSe_2$ 단결정 박막 성장과 태양 전지로의 응용)

  • Lee, Sang-Youl;Hong, Kwang-Joon
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.4
    • /
    • pp.1-11
    • /
    • 2005
  • The stoichiometric mixture of evaporating materials for the $CuInSe_2$ single crystal thin film was prepared from horizontal furnace. Using extrapolation method of X-ray diffraction patterns for the polycrystal $CuInSe_2$, it was found tetragonal structure whose lattice constant $a_0$ and $c_0$ were $5.783\;{\AA}$ and $11.621\;{\AA}$, respectively. To obtain the $CuInSe_2$ single crystal thin film, $CuInSe_2$ mixed crystal was deposited on throughly etched GaAs(100) by the HWE(Hot Wall Epitaxy) system. The source and substrate temperature were $620^{\circ}C$ and $410^{\circ}C$ respectively. The crystalline structure of $CuInSe_2$ single crystal thin film was investigated by the double crystal X-ray diffraction(DCXD). Hall effect on this sample was measured by the method of Van der Pauw and studied on carrier density and mobility depending on temperature. From Hall data, the mobility was likely to be decreased by impurity scattering in the temperature range 30 K to 100 K and by lattice scattering in the temperature range 100 K to 293 K. The temperature dependence of the energy band gap of the $CuInSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=1.1851\;eV-(8.99{\times}10^{-4}\;eV/K)T^2/(T+153\;K)$. The open-circuit voltage, short current density, fill factor, and conversion efficiency of $n-CdS/p-CuGaSe_2$ heterojunction solar cells under $80\;mW/cm^2$ illumination were found to be 0.51V, $29.3\;mA/cm^2$, 0.76 and 14.3 %, respectively.

Growth of CaAl2Se4: Co Single Crystal Thin Film for Solar Cell Development and Its Solar Cell Application (태양 전지용 CaAl2Se4: Co 단결정 박막 성장과 태양 전지로의 응용)

  • Bang, Jin-Ju;Hong, Kwang-Joon
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.1
    • /
    • pp.25-36
    • /
    • 2018
  • The stoichiometric mixture of evaporating materials for the $CaAl_2Se_4$: Co single crystal thin film was prepared from horizontal furnace. Using extrapolation method of X-ray diffraction patterns for the polycrystal $CaAl_2Se_4$, it was found orthorhomic structure whose lattice constant $a_0$, $b_0$ and $c_0$ were 6.4818, $11.1310{\AA}$ and $11.2443{\AA}$, respectively. To obtain the $CaAl_2Se_4$: Co single crystal thin film, $CaAl_2Se_4$: Co mixed crystal was deposited on throughly etched Si (100) by the HWE (Hot Wall Epitaxy) system. The source and substrate temperature were $600^{\circ}C$ and $440^{\circ}C$ respectively. The crystalline structure of $CaAl_2Se_4$: Co single crystal thin film was investigated by the double crystal X-ray diffraction (DCXD). Hall effect on this sample was measured by the method of Van der Pauw and studied on carrier density and mobility depending on temperature. From Hall data, the mobility was likely to be decreased by impurity scattering in the temperature range 30 K to 100 K and by lattice scattering in the temperature range 100 K to 293 K. The temperature dependence of the energy band gap of the $CaAl_2Se_4$: Co obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=3.8239eV-(4.9823{\times}10^{-3}eV/K)T_2/(T+559K)$. The open-circuit voltage, short current density, fill factor, and conversion efficiency of $p-Si/p-CaAl_2Se_4$: Co heterojunction solar cells under $80mW/cm^2$ illumination were found to be 0.42 V, $25.3mA/cm^2$, 0.75 and 9.96%, respectively.

Growth and Photocurrent Properties of $CuGaSe_2$ Single Crystal ($CuGaSe_2$ 단결정 박막 성장과 광전류 특성)

  • K.J. Hong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.81-81
    • /
    • 2003
  • The stochiometric mixture of evaporating materials for the CuGaSe$_2$ single crystal thin films were prepared from horizontal furnace. Using extrapolation method of X-ray diffraction patterns for the polycrystal CuGaSe$_2$, it was found tetragonal structure whose lattice constant no and co were 5.615$\AA$ and 11.025$\AA$, respectively. To obtains the single crystal thin films, CuGaSe$_2$ mixed crystal was deposited on throughly etched GaAs(100) by the Hot Wall Epitaxy(HWE) system. The source and substrate temperature were 61$0^{\circ}C$ and 45$0^{\circ}C$ respectively, and the growth rate of the single crystal thin films was about 0.5${\mu}{\textrm}{m}$/h. The crystalline structure of single crystal thin films was investigated by the double crystal X-ray diffraction(DCXD). Hall effect on this sample was measured by the method of van der pauw and studied on carrier density and mobility depending on temperature. From Hall data, the mobility was likely to be decreased by pizoelectric scattering in the temperature range 30K to 150K and by polar optical scattering in the temperature range 150K to 293K. The optical energy gaps were found to be 1.68eV for CuGaSe$_2$ single crystal thin films at room temperature. The temperature dependence of the photocurrent peak energy is well explained by the Varshni equation then the constants in the Varshni equation are given by a=9.615$\times$ 10$^{-4}$ eV/K, and $\beta$=335K. From the photocurrent spectra by illumination of polarized light of the CuGaSe$_2$ single crystal thin films. We have found that values of spin orbit coupling ΔSo and crystal field splitting ΔCr was 0.0900eV and 0.2498eV, respectively. From the PL spectra at 20K, the peaks corresponding to free bound excitons and D-A pair and a broad emission band due to SA is identified. The binding energy of the free excitons are determined to be 0.0626eV and the dissipation energy of the acceptor-bound exciton and donor-bound exciton to be 0.0352eV, 0.0932eV, respectively.

  • PDF

Capacity Comparison of Two Uplink OFDMA Systems Considering Synchronization Error among Multiple Users and Nonlinear Distortion of Amplifiers (사용자간 동기오차와 증폭기의 비선형 왜곡을 동시에 고려한 두 상향링크 OFDMA 기법의 채널용량 비교 분석)

  • Lee, Jin-Hui;Kim, Bong-Seok;Choi, Kwonhue
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.5
    • /
    • pp.258-270
    • /
    • 2014
  • In this paper, we investigate channel capacity of two kinds of uplink OFDMA (Orthogonal Frequency Division Multiple Access) schemes, i.e. ZCZ (Zero Correlation Zone) code time-spread OFDMA and sparse SC-FDMA (Single Carrier Frequency Division Mmultiple Access) robust to access timing offset (TO) among multiple users. In order to reflect the practical condition, we consider not only access TO among multiple users but also peak to average power ratio (PAPR) which is one of hot issues of uplink OFDMA. In the case with access TO among multiple users, the amplified signal of users by power control might affect a severe interference to signals of other users. Meanwhile, amplified signal by considering distance between user and base station might be distorted due to the limit of amplifier and thus the performance might degrade. In order to achieve the maximum channel capacity, we investigate the combinations of transmit power so called ASF (adaptive scaling factor) by numerical simulations. We check that the channel capacity of the case with ASF increases compared to the case with considering only distance i.e. ASF=1. From the simulation results, In the case of high signal to noise ratio (SNR), ZCZ code time-spread OFDMA achieves higher channel capacity compared to sparse block SC-FDMA. On the other hand, in the case of low SNR, the sparse block SC-FDMA achieves better performance compared to ZCZ time-spread OFDMA.