• 제목/요약/키워드: hot air heating

검색결과 331건 처리시간 0.031초

온풍난방기의 배기열을 이용한 지중 난방용 온수공급시스템의 열회수특성 (Heat Recovery Characteristics of the Hot Water Supply System with Exhaust Heat Recovery Unit Attached to the Hot Air Heater for Plant Bed Heating in the Greenhouse)

  • 김영중;유영선;장진택;강금춘;이건중;신정웅
    • Journal of Biosystems Engineering
    • /
    • 제25권3호
    • /
    • pp.221-226
    • /
    • 2000
  • Hot air heater with light oil burner is the most common heater for greenhouse heating in the winter season in Korea. However, since the thermal efficiency of the heater is about 80∼85%, considerable unused heat amount in the form of exhaust gas heat discharges to atmosphere. In order to capture this exhaust heat a heat recovery system for plant bed heating in the greenhouse was built and tested in the hot air heating system of greenhouse. The heat recovery system is made for plant bed or soil heating in the greenhouse. The system consisted of a heat exchanger made of copper pipes, ${\Phi}12.7{\times}0.7t$ located in the rectangular column of $330{\times}330{\times}900mm$, a water circulation pump, circulation plastic pipe and a water tank. The total heat exchanger area is 1.5$m^2$, calculated considering the heat exchange amount between flue gas and water circulated in the copper pipes. The system was attached to the exhaust gas path. The heat recovery system was designed as to even recapture the latent heat of flue gas when exposing to low temperature water in the heat exchanger. According to the performance test it could recover 45,200 to 51,000kJ/hr depending on the water circulation rates of 330 to $690\ell$/hr from the waste heat discharged. The exhaust gas temperature left the heat exchanger dropped to $100^{\circ}C$ from $270^{\circ}C$ by the heat exchange between the water and the flue gas, while water gained the difference and temperature increased to $38^{\circ}C$ from $21^{\circ}C$ at the water flow rate of $690\ell$/hr. By the feasibility test conducted in the greenhouse, the system did not encounter any difficulty in operations. And, the system could recover 220,235kJ of exhaust gas heat in a day, which is equivalent of 34% of the fuel consumption by the water boiler for plant bed heating of 0.2ha in the greenhouse.

  • PDF

고온가스 및 액체 바이패스 적용 용량가변 히트펌프의 성능특성에 관한 실험적 연구 (An Experimental Study on the Performance Characteristics of Hot-gas and Liquid Bypass Heat Pump Systems for Capacity Modulation)

  • 안재환;주영주;윤원재;강훈;김용찬
    • 설비공학논문집
    • /
    • 제25권3호
    • /
    • pp.137-142
    • /
    • 2013
  • A small air-conditioner or chiller for a constant temperature bath normally uses a constant speed compressor. The constant speed compressor is relatively inexpensive, but it uses on/off control for capacity modulation. The on/off control has several disadvantages, specifically energy loss and large temperature fluctuation. Continuous operation with a bypass system can be an alternative to on/off control, for capacity modulation. In this study, a heat pump system having a hot-gas bypass and a liquid bypass was adopted. The performance of the bypass-type heat pump was measured, by varying the bypass valve opening. The differences of the COP between the hot-gas bypass and the liquid bypass, in the cooling and heating operations, were within 2% and 1%, respectively. The liquid bypass showed a wider range of capacity control in the cooling operation but the hot-gas bypass showed a wider range of capacity control in the heating operation.

컨테이너하우스의 바닥과 벽면에 엑셀파이프 매설에 의한 벽면, 바닥, 공기, 온수의 온도분포 특성 (Characteristics of Temperature Distribution of Wall, Floor, Air and Hot Water by Burying the Excel Pipe on the Floor and Wall of a Container House)

  • 조동현
    • 한국기계가공학회지
    • /
    • 제21권2호
    • /
    • pp.94-100
    • /
    • 2022
  • A study was conducted to significantly increase the heat transfer area by simultaneously burying the excel pipe in the floor and wall of a container house, thereby greatly reducing the initial heating time. In addition, a small hot water boiler suitable for the heating load of a small container house with a maximum area of 6 m2 was studied. A wall-mounted hot water boiler was developed as a result of the study. When a hot water boiler is installed outdoors for heating, heat radiation energy is lost in winter from the hot water boiler and hot water pipe due to the low temperature. We propose an approach through which the energy loss was greatly reduced and the temperature of hot water increased in proportion to the operating time. Moreover, as the mass flow rate of the hot water flowing inside the excel pipe increased, the temperature of the hot water decreased. The temperature of the wall and floor surfaces of the container house increased in proportion to the increase in the mass flow rate of hot water flowing inside the excel tube. Natural convection heat transfer was realized from the wall and floor surfaces of the container house, and the heat transfer area was increased by a factor of 3 with respect to heat transfer area limited to the floor by the existing hot water panel. As a result, the initial temperature increase rate was much higher because of the larger heat transfer area.

인버터시스템 적용 지역난방 시스템의 2차측 공급수 온도 제어방안에 따른 에너지사용량 실증 비교 (Actual Energy Consumption Analysis of Temperature Control Strategies for Secondary Side Hot Water District Heating System with an Inverter)

  • 조성환;홍성기
    • 설비공학논문집
    • /
    • 제27권4호
    • /
    • pp.179-186
    • /
    • 2015
  • In this study, the actual energy consumption of the secondary side District Heating System (DHS) with different hot water supply temperature control methods is compared. The two methods are Outdoor Temperature Reset Control and Outdoor Temperature Predictive Control. While Outdoor Temperature Reset Control has been widely used for energy savings of the secondary side system, the results show that the Outdoor Temperature Predictive Control method saves more energy. In general, the Outdoor Temperature Predictive Control method lowers the supply temperature of hot water, and it reduces standby losses and increases the overall heat transfer value of heated spaces due to more flow into the space. During actual energy consumption monitoring, the Outdoor Temperature predictive Control method saves about 6.6% of energy when compared to the Outdoor Temperature Reset Control method. Also, it is found that at partial load condition, such as during daytime, the fluctuation of hot water supply temperature with Outdoor Temperature Reset Control is more severe than that with Outdoor Temperature Predictive Control. Thus, it proves that Outdoor Temperature Predictive Control is more stable even at partial load conditions.

강제순환 방식의 공기가열식 태양열 집열기의 성능분석에 관한 수치해석 연구 (A Numerical Study on the Performance Analysis of a Solar Air Heating System with Forced Circulation Method)

  • 박형수;김철호
    • 한국산학기술학회논문지
    • /
    • 제18권3호
    • /
    • pp.122-126
    • /
    • 2017
  • 태양열 에너지를 이용하여 단순한 형태의 공기가열식 집열기를 이용하여 공기를 가열하고 이를 활용하여 생활공간의 난방문제를 해결하기 위한 장치를 개발하는데 목적을 두고 진행되고 있다. 현 시점에서 연구는 모델로 개발한 공기가열식 태양열에너지 집열기의 크기 변화에 따른 가용한 에너지의 량을 이론적으로 산출해 보고 이를 통해 개발 시스템의 가능성을 판단하고자 한다. 본 연구에서는 공기가열식 태양열 집열기의 공기가열성능을 판단하기 위하여, 특정 크기의 태양열 집열기에 일정한 일사량을 투하하였을 때, 모델 집열기 내부에서의 열전달 특성변화와 이를 통해 생산되는 공기의 온도($^{\circ}C$)와 생산량(kg/h)을, 유한체적법(Finite Volume Method)을 적용한 범용 열유동해석(CFD) 프로그램인 영국 CHAM사의 PHOENICS(1)를 이용하여, 분석한 결과를 구하였다. 분석한 결과에서 알 수 있듯이 집열기의 크기가 ($1.2m{\times}1.1m{\times}0.19m$)의 집열기에서 알루미늄으로 제작하는 내경 0.1m의 공기 가열관을 이용하여 가열할 수 있는 공기의 온도는 약 $40.5^{\circ}C$이며 이때 생산되는 공기의 생산량은 약 $161m^3/h$으로 산출되었다. 본 모델장치는 충분히 태양의 열에너지를 이용하여 실내공간의 온도를 인간이 활동하기에 적합한 활동의 환경을 유지하는데 활용할 수 있다고 판단된다.

온실 난방시스템 설계를 위한 온수난방배관의 방열량 분석 (Analysis of Heat Emission from Hot Water Pipe for Greenhouse Heating System Design)

  • 신현호;남상운
    • 생물환경조절학회지
    • /
    • 제28권3호
    • /
    • pp.204-211
    • /
    • 2019
  • 본 연구는 국내 온실의 환경설계 기준 설정에 필요한 기초자료 제공을 목적으로 온수난방 방식을 채택하고 있는 상업용 온실 2곳에서 난방 중 열환경 계측 실험을 실시하고, 온수난방 배관의 열전달 특성을 분석하여 난방배관의 단위길이 당 방열량 자료를 제시하였다. 실험 기간동안 두 온실의 평균기온은 각각 $16.3^{\circ}C$$14.6^{\circ}C$로 조절되었으며, 난방배관의 온수 온도는 평균 $52.3^{\circ}C$$45.0^{\circ}C$로 관측되었다. 실험결과 난방배관 표면의 자연대류열전달계수는 $5.71{\sim}7.49W/m^2^{\circ}C$의 범위로 분석되었다. 난방배관 내의 유속이 0.5m/s 이상일 때에는 관내의 수온과 관 외부의 표면온도 차이가 크지 않은 것으로 나타났다. 이를 바탕으로 난방배관의 관류열전달계수를 수평원통에서의 층류 자연대류열전달계수의 형태로 유도하였다. 유도된 관류열전달계수 식을 변형하여 관의 규격과 온수-실내공기의 온도차를 입력 변수로 하는 난방배관의 단위길이 당 방열량 산정식을 개발하였다. 본 연구 결과를 기존에 제공되고 있는 국내외 여러 자료와 비교한 결과 JGHA 자료와 가장 유사한 것으로 나타났다. 국내 온실의 설계에서 적용하고 있는 NAAS 자료와 국외의 BALLS 및 ASHRAE 자료는 값이 너무 큰 것으로 판단된다. 따라서 국내 온실의 환경설계기준을 제정하고, 고시하기 위해서는 추가적인 실험을 통해 이 부분에 대한 충분한 검토가 필요할 것으로 판단된다.

공동주택 난방용 자동온도조절기의 성능해석 연구 (A Study on the Performance of Automatic Thermostatic Valves for Hot Water Heating System in Residential Buildings)

  • 안병천;이태원;김용기;송재엽
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2005년도 동계학술발표대회 논문집
    • /
    • pp.457-462
    • /
    • 2005
  • In this study, the performance of automatic thermostatic valves according to each heating method of a large scale residential building were researched by simulation. The flow characteristics of the entire pipe networks of the hot water radiant heating system is analized by using linear analysis method. For the analysis of unsteady heat transfer phenomena in each household, the method of using electric equivalent R-C circuit is applied.

  • PDF

바닥난방시스템의 외기온도 변화특성을 고려한 운전방안에 관한 연구 (A Study on the Operational Strategies for Outdoor Air Temperature Change Characteristics in a Radiant Floor Heating System)

  • 안병천;송재엽
    • 설비공학논문집
    • /
    • 제25권12호
    • /
    • pp.685-692
    • /
    • 2013
  • In this study, the control characteristics and effects of heating control methods on the heating performance and energy consumption of a hot-water heating control system of a residential apartment were researched by simulation and experiment. The purpose of this study is to evaluate operational strategies for improving an indoor thermal environment and reducing f energy consumption in the radiant floor heating system of a residential apartment.

온수 가열 바닥 난방 시스템용 고성능 버블젯 루프 히트파이프 개발 (Development of High Performance Bubble Jet Loop Heat Pipe for Hot Water Floor Heating System)

  • 김종수;권용하;김정웅
    • 동력기계공학회지
    • /
    • 제18권4호
    • /
    • pp.23-28
    • /
    • 2014
  • In order to increase the performance of conventional hot water floor heating system, the bubble jet loop heat pipe for the system was developed. This experiment was conducted under next conditions : Working fluid was R-134a, charging ratio was 50%. A temperature of hot water, room temperature and flow rate were $60^{\circ}C$, $15^{\circ}C$ and 0.5~1.5 kg/min, respectively. The experimental results, show that bubble jet loop heat pipe had a high effective thermal conductivity of $4714kW/m^{\circ}C$ and a sufficient heat flux of $73W/m^2$ to heat the floor to $35^{\circ}C$ in case of the 1.5 kg/min of flow rate. So the bubble jet loop heat pipe has a possibility for appling of the floor heating system. Additionally, the visualization of bubble jet loop heat pipe was performed to understand the operating principle. Bubbles made by the narrow gap between inner tube and outer tube of evaporating part generate pulsation at liquid surface of working fluid. The pulsation had slug flow and wavy flow. So working fluid circulates in the bubble jet loop heat pipe as two phase flow pattern. And large amount of heat is transferred by the latent heat from evaporating part to condensing part.

Novel Electromagnetic Induction Eddy Current DPH based Continuous Pipeline Fluid Heating using Soft Switching PWM High Frequency Inverter

  • Nam, Jing-Rak
    • Journal of information and communication convergence engineering
    • /
    • 제6권3호
    • /
    • pp.305-309
    • /
    • 2008
  • This paper presents an innovative prototype of a new conceptual electromagnetic induction eddy current based fluid heating appliance using voltage-fed quasi resonant zero voltage soft switching PWM high-frequency inverter using IGBTs, which can operate at a constant frequency variable power regulation scheme. The promising simple high efficient low noise inverter type electromagnetic induction eddy current based pipeline fluid heating appliance is proposed for saturated steam generator, superheated steam generator, hot water and hot air producer, metal catalyst heating for exhaust gas cleaning in engine. Under these technological backgrounds, a novel electromagnetic induction eddy current Dual Packs Heater(DPH) based pipeline fluid heating incorporates thin metal layer type package for continuous fluid heating appliances applying two types of voltage-fed quasi load resonant ZVS-PWM high frequency inverter. The unique features of a novel electromagnetic induction eddy current DPH based continuous pipeline fluid heating appliance is illustrated on the basis of simulation and discussed for the steady state operating characteristics and experimental results.