DOI QR코드

DOI QR Code

Analysis of Heat Emission from Hot Water Pipe for Greenhouse Heating System Design

온실 난방시스템 설계를 위한 온수난방배관의 방열량 분석

  • Shin, Hyun-Ho (Department of Agricultural and Rural Engineering, Chungnam National University) ;
  • Nam, Sang-Woon (Department of Agricultural and Rural Engineering, Chungnam National University)
  • 신현호 (충남대학교 지역환경토목학과) ;
  • 남상운 (충남대학교 지역환경토목학과)
  • Received : 2019.05.01
  • Accepted : 2019.06.07
  • Published : 2019.07.30

Abstract

The purpose of this study is to provide basic data for setting environmental design standards for domestic greenhouses. We conducted experiments on thermal environment measurement at two commercial greenhouses where hot water heating system is adopted. We analyzed heat transfer characteristics of hot water heating pipes and heat emission per unit length of heating pipes was presented. The average air temperature in two greenhouses was controlled to $16.3^{\circ}C$ and $14.6^{\circ}C$ during the experiment, respectively. The average water temperature in heating pipes was $52.3^{\circ}C$ and $45.0^{\circ}C$, respectively. Experimental results showed that natural convection heat transfer coefficient of heating pipe surface was in the range of $5.71{\sim}7.49W/m^2^{\circ}C$. When the flow rate in heating pipe was 0.5m/s or more, temperature difference between hot water and pipe surface was not large. Based on this, overall heat transfer coefficient of heating pipe was derived as form of laminar natural convection heat transfer coefficient in the horizontal cylinder. By modifying the equation of overall heat transfer coefficient, a formula for calculating the heat emission per unit length of hot water heating pipe was developed, which uses pipe size and temperature difference between hot water and indoor air as input variables. The results of this study were compared with domestic and foreign data, and it was found to be closest to JGHA data. The data of NAAS, BALLS and ASHRAE were judged to be too large. Therefore, in order to set up environmental design standards for domestic greenhouses, it is necessary to fully examine those data through further experiments.

본 연구는 국내 온실의 환경설계 기준 설정에 필요한 기초자료 제공을 목적으로 온수난방 방식을 채택하고 있는 상업용 온실 2곳에서 난방 중 열환경 계측 실험을 실시하고, 온수난방 배관의 열전달 특성을 분석하여 난방배관의 단위길이 당 방열량 자료를 제시하였다. 실험 기간동안 두 온실의 평균기온은 각각 $16.3^{\circ}C$$14.6^{\circ}C$로 조절되었으며, 난방배관의 온수 온도는 평균 $52.3^{\circ}C$$45.0^{\circ}C$로 관측되었다. 실험결과 난방배관 표면의 자연대류열전달계수는 $5.71{\sim}7.49W/m^2^{\circ}C$의 범위로 분석되었다. 난방배관 내의 유속이 0.5m/s 이상일 때에는 관내의 수온과 관 외부의 표면온도 차이가 크지 않은 것으로 나타났다. 이를 바탕으로 난방배관의 관류열전달계수를 수평원통에서의 층류 자연대류열전달계수의 형태로 유도하였다. 유도된 관류열전달계수 식을 변형하여 관의 규격과 온수-실내공기의 온도차를 입력 변수로 하는 난방배관의 단위길이 당 방열량 산정식을 개발하였다. 본 연구 결과를 기존에 제공되고 있는 국내외 여러 자료와 비교한 결과 JGHA 자료와 가장 유사한 것으로 나타났다. 국내 온실의 설계에서 적용하고 있는 NAAS 자료와 국외의 BALLS 및 ASHRAE 자료는 값이 너무 큰 것으로 판단된다. 따라서 국내 온실의 환경설계기준을 제정하고, 고시하기 위해서는 추가적인 실험을 통해 이 부분에 대한 충분한 검토가 필요할 것으로 판단된다.

Keywords

References

  1. Albright, L.D. 1991. Environment control for animals and plants. ASAE, Michigan, USA.
  2. ASHRAE. 2001. ASHRAE Handbook Fundamentals 2001. American Society of Heating, Refrigerating and Air-Conditioning Engineers.
  3. AASHRAE. 2013. ASHRAE Handbook Fundamentals 2013. American Society of Heating, Refrigerating and Air-Conditioning Engineers.
  4. Balls, R.C. 1986. Horticultural engineering technology: fixed equipment and buildings. Macmillan Education Ltd.
  5. Castilla, N. 2013. Greenhouse technology and management. CABI, Oxfordshire, UK.
  6. Hanan, J.J. 1998. Greenhouses: advanced technology for protected horticulture. CRC Press LLC.
  7. Holman, J.P. 1992. Heat transfer sixth edition. McGraw-Hill Book Company.
  8. JGHA. 2007. Handbook of protected horticulture 5th edition. Japan Greenhouse Horticulture Association (in Japanese).
  9. Kim, M.K., S.G. Lee, W.M. Seo, and J.E. Son. 1997. Design standards for greenhouse environment. Rural Development Corporation (in Korean).
  10. Ko, J.K., M.K. Kim, S.G. Lee, W.M. Seo, and H.R. Choi. 1990. Agricultural structures engineering. Seoul National University Press (in Korean).
  11. NAAS. 2015. Design standards for greenhouse environment. National Academy of Agricultural Science (in Korean).
  12. Nam, S.W., D.U. Seo, and H.H. Shin. 2015. Empirical analysis on the cooling load and evaporation efficiency of fogging system in greenhouses. Protected Horticulture and Plant Factory. 24(3):147-152 (in Korean). https://doi.org/10.12791/KSBEC.2015.24.3.147
  13. Nam, S.W., Y.C. Youn, H.W. Lee, I.B. Lee, H.T. Kim, J.W. Lee, and I.W. Seo. 2018. Agricultural structures engineering new edition. Hyangmoonsa Pub (in Korean).
  14. Nelson, P.V. 1995. Greenhouse operation and management. Prentice-Hall, Inc.
  15. Takakura, T. 1993. Climate under cover; Digital dynamic simulation in plant bio-engineering. Kluwer Academic Publishers.