• Title/Summary/Keyword: honeycomb sandwich panels

Search Result 39, Processing Time 0.027 seconds

Experimental and Numerical Simulation Studies of Low-Velocity Impact Responses on Sandwich Panels for a BIMODAL Tram

  • Lee, Jae-Youl;Shin, Kwang-Bok;Jeong, Jong-Cheol
    • Advanced Composite Materials
    • /
    • v.18 no.1
    • /
    • pp.1-20
    • /
    • 2009
  • This paper describes the results of experiments and numerical simulation studies on the impact and indentation damage created by low-velocity impact subjected onto honeycomb sandwich panels for application to the BIMODAL tram. The test panels were subjected to low-velocity impact loading using an instrumented testing machine at six energy levels. Contact force histories as a function of time were evaluated and compared. The extent of the damage and depth of the permanent indentation was measured quantitatively using a 3-dimensional scanner. An explicit finite element analysis based on LS-DYNA3D was focused on the introduction of a material damage model and numerical simulation of low-velocity impact responses on honeycomb sandwich panels. Extensive material testing was conducted to determine the input parameters for the metallic and composite face-sheet materials and the effective equivalent damage model for the orthotropic honeycomb core material. Good agreement was obtained between numerical and experimental results; in particular, the numerical simulation was able to predict impact damage area and the depth of indentation of honeycomb sandwich composite panels created by the impact loading.

Weight Minimization of a Beam Structure Using a Honeycomb Sandwich Panel (허니컴 샌드위치 패널을 이용한 보 구조물의 경량화에 관한 연구)

  • 성활경
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.125-128
    • /
    • 2003
  • In machine tool design, fast traversing cannot be achieved without reducing mass of the moving part. Honeycomb sandwich panel is extremely lightweight, and relatively rigid at the same time. We can reduce much weight when we selectively utilize honeycomb sandwich panels as stiffeners on machine tool structures. Feasibility of reducing weight is studied using a beam structure with both ends fixed.

  • PDF

Dynamic Behavior Analysis of a Satellite Having Sandwich Panel by Utilizing Asymptotic Homogenization (Asymptotic 균질화법을 활용한 샌드위치패널로 제작된 위성 구조체의 동적 거동 분석)

  • Cho, Hee Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.11
    • /
    • pp.1203-1210
    • /
    • 2013
  • Korea's first Naro-Science small class satellite was launched by Naro launcher in 2013. The structure of the satellite is mostly composed of aluminum honeycomb and frame. The honeycomb structure is homogenized with asymptotic homogenization method and its mechanical properties were used for the numerical analysis. There have been some difficulties to modeling the honeycomb sandwich panels for FEA. In the present study, the mechanical characteristics of the sandwich panel composite were numerically computed and used for the simulation. This methodology makes it easy to overcome the weakness of modeling of complicated sandwich panels. Both an experiment of vibration test and numerical analyses were conducted simultaneously. The analysis results from the current homogenization were compared with that of experiment. It shows a good agreement on the dynamic responses and certified the reliability of the present methodology when manipulate sandwich panel structure.

A Study on Low-Velocity Impact Characterization of Honeycomb Sandwich Panels According to the Changes of Impact Location and Core Fabrication Angles (충격위치와 심재적층각도에 따른 하니컴 샌드위치 패널의 저속충격 특성 연구)

  • Jeon, Kwang-Woo;Shin, Kwang-Bok;Ko, Hee-Young;Kim, Dae-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.1
    • /
    • pp.64-71
    • /
    • 2009
  • In this paper, a study on low-velocity impact response of honeycomb sandwich panels was done for the changes of impact location and core fabrication angles. The test specimens were made of glass/epoxy laminate facesheet and aluminum honeycomb core. Square samples of 100mm and 100mm sides were subjected under low-velocity impact loading using instrumented testing machine at three energy levels. Impact parameters like maximum force, time to maximum force, deflection at maximum force and absorbed energy were evaluated and compared for the changes of impact location and core fabrication angle. The impact damage size were measured at facesheet surface by 3-Dimensional scanner. Also, sandwich specimens after impact test were cut to analyse the failure mode.

An Experimental Study on the Behavior of Aluminum-Honeycomb Sandwich Panels (알루미늄하니콤 샌드위치판의 거동에 관한 실험적 연구)

  • Lee, Yong W.;Chun, Min S.;Paik, Jeom K.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.4
    • /
    • pp.106-123
    • /
    • 1996
  • This paper experimentally investigates the characteristics of Al-honeycomb sandwich panels which are considered as a promising primary strength member of weight critical large structures. Some tests on the aluminum honeycomb panels subject to 3-point bending or uniaxial compression or crushing load are carried out. Based on the test results, linear elastic response, buckling/ultimate strength and crushing/energy absorption capacity are discussed. Some guidelines for design of aluminum honeycomb panels are given.

  • PDF

The Optimum Design of the Light-weight Composite Pallet Plank for Assembly Line of LCD/PDP by using Honeycomb Sandwich Panel (하니컴 샌드위치 Panel을 이용한 LCD/PDP생산공정용 고기능성 복합 신소재 파렛트의 최적설계)

  • Kim, Y.H.;Choi, B.G.;Son, J.H.;Cho, Y.D.;Eum, S.H.;Woo, B.H.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.388-394
    • /
    • 2005
  • A typical honeycomb sandwich panel consists of two thin, high-strength facings bonded to a thick, light-weight core. Each component by itself is relatively weak and flexible, but when it combind in a sandwich panel they produce a structure that is stiff, strong, and lightweight. In addition to use in honeycomb sandwich panels, honeycomb is used for energy absorption, radio frequency shielding, light diffusion, and to direct air flow.Accordingly, the usage of honeycomb sandwich structure is very widely applied to the aircraft, the automobile, and marine industry, etc., because of these advantages. Generally, this honeycomb sandwich structure is manufactured by autoclave process.In this study, the honeycomb sandwich structure was produced by prepreg. To prove the suitability the honeycomb sandwich structure with prepreg, The optimum design of the skin materials and honeycomb sandwich structure were evaluated with the theory of stress analysis.

  • PDF

Sound Transmission Loss of Honeycomb Sandwich Panels (하니컴 샌드위치판의 차음성능)

  • Kim, Bong-Ki;Kim, Jae-Seung;Kim, Hyun-Sil;Kang, Hyun-Ju
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.725-727
    • /
    • 2005
  • In this study, the sound transmission characteristics of honeycomb structures are investigated with changing its thickness, shear modulus, and surface density. Theoretical predictions of aluminum honeycomb panels are compared with experimental results, which can furnish an in depth understanding of the insulation characteristics of honeycomb panels.

  • PDF

Evaluation of the Property of adiabatic Insulation for TTX Train with Sandwich Composite bodyshell (샌드위치 복합소재가 적용된 틸팅 차량의 단열 특성 평가 연구)

  • Lee Sang-Jin;Oh Kyung-Won;Jeong Jong-Cheol;Cho Se-Hyun;Seo Soung-il
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.251-256
    • /
    • 2005
  • This study was performed the heat transportation ratio of three types of the following sandwich panel by KS F 2278(2003) ; Type ${\sharp}1$ : Carbon/epoxy Aluminum Honeycomb and Balsa Core Sandwich Panel(Thickness : 37mm), Type ${\sharp}2$ : Carbon/epoxy Aluminum Honeycomb Core Sandwich Panel(Thickness : 57mm), and Type ${\sharp}3$ : Carbon/epoxy Aluminum Honeycomb Core Sandwich Panel(Thickness : 37mm). Also was performed the heat transportation of next three types of the following sandwich panel by KS F2277(2002) ; Type ${\sharp}4$ and ${\sharp}5$ : 27mm, and 35mm thick-Aluminum Honeycomb Sandwich Panels, and Type ${\sharp}6$ : 27mm thick-Foaming Aluminum Sandwich Panel. It is the larger area between the skin and core, the heat transportation ratio is the higher, and when it is composed of the hybrid composite structure, good insulation property was shown.

  • PDF

Smart Honeycomb Sandwich Panels With Damage Detection and Shape Recovery Functions

  • Okabe, Yoji;Minakuchi, Shu;Shiraishi, Nobuo;Murakami, Ken;Takeda, Nobuo
    • Advanced Composite Materials
    • /
    • v.17 no.1
    • /
    • pp.41-56
    • /
    • 2008
  • In this research, optical fiber sensors and shape memory alloys (SMA) were incorporated into sandwich panels for development of a smart honeycomb sandwich structure with damage detection and shape recovery functions. First, small-diameter fiber Bragg grating (FBG) sensors were embedded in the adhesive layer between a CFRP face-sheet and an aluminum honeycomb core. From the change in the reflection spectrum of the FBG sensors, the debonding between the face-sheet and the core and the deformation of the face-sheet due to impact loading could be well detected. Then, the authors developed the SMA honeycomb core and bonded CFRP face-sheets to the core. When an impact load was applied to the panel, the cell walls of the core were buckled and the face-sheet was bent. However, after the panel was heated over the reverse transformation finish temperature of the SMA, the core buckling disappeared and the deflection of the face-sheet was relieved. Hence the bending stiffness of the panel could be recovered.

Free vibration of actual aircraft and spacecraft hexagonal honeycomb sandwich panels: A practical detailed FE approach

  • Benjeddou, Ayech;Guerich, Mohamed
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.2
    • /
    • pp.169-187
    • /
    • 2019
  • This work presents a practical detailed finite element (FE) approach for the three-dimensional (3D) free-vibration analysis of actual aircraft and spacecraft-type lightweight and thin honeycomb sandwich panels. It consists of calling successively in $MATLAB^{(R)}$, via a developed user-friendly GUI, a detailed 3D meshing tool, a macrocommands language translator and a commercial FE solver($ABAQUS^{(R)}$ or $ANSYS^{(R)}$). In contrary to the common practice of meshing finely the faces and core cells, the proposed meshing tool represents each wall of the actual hexagonal core cells as a single two-dimensional (2D) 4 nodes quadrangularshell element or two 3 nodes triangular ones, while the faces meshes are obtained simply using the nodes at the core-faces interfaces. Moreover, as the same 2D FE interpolation type is used for meshing the core and faces, this leads to an automatic handling of their required FE compatibility relations. This proposed approach is applied to a sample made of very thin glass fiber reinforced polymer woven composite faces and a thin aluminum alloy hexagonal honeycomb core. The unknown or incomplete geometric and materials properties are first collected through direct measurements, reverse engineering techniques and experimental-FE modal analysis-based inverse identification. Then, the free-vibrations of the actual honeycomb sandwich panel are analyzed experimentally under different boundary conditions and numerically using different mesh basic cell shapes. It is found that this approach is accurate for the first few modes used for pre-design purpose.