Browse > Article
http://dx.doi.org/10.12989/aas.2019.6.2.169

Free vibration of actual aircraft and spacecraft hexagonal honeycomb sandwich panels: A practical detailed FE approach  

Benjeddou, Ayech (SUPMECA)
Guerich, Mohamed (Leonard de Vinci Pole Universitaire, Research Center)
Publication Information
Advances in aircraft and spacecraft science / v.6, no.2, 2019 , pp. 169-187 More about this Journal
Abstract
This work presents a practical detailed finite element (FE) approach for the three-dimensional (3D) free-vibration analysis of actual aircraft and spacecraft-type lightweight and thin honeycomb sandwich panels. It consists of calling successively in $MATLAB^{(R)}$, via a developed user-friendly GUI, a detailed 3D meshing tool, a macrocommands language translator and a commercial FE solver($ABAQUS^{(R)}$ or $ANSYS^{(R)}$). In contrary to the common practice of meshing finely the faces and core cells, the proposed meshing tool represents each wall of the actual hexagonal core cells as a single two-dimensional (2D) 4 nodes quadrangularshell element or two 3 nodes triangular ones, while the faces meshes are obtained simply using the nodes at the core-faces interfaces. Moreover, as the same 2D FE interpolation type is used for meshing the core and faces, this leads to an automatic handling of their required FE compatibility relations. This proposed approach is applied to a sample made of very thin glass fiber reinforced polymer woven composite faces and a thin aluminum alloy hexagonal honeycomb core. The unknown or incomplete geometric and materials properties are first collected through direct measurements, reverse engineering techniques and experimental-FE modal analysis-based inverse identification. Then, the free-vibrations of the actual honeycomb sandwich panel are analyzed experimentally under different boundary conditions and numerically using different mesh basic cell shapes. It is found that this approach is accurate for the first few modes used for pre-design purpose.
Keywords
free vibration; composite; hexagonal honeycomb; sandwich panel; detailed FE model;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Ahmed, K.M. (1971), "Static and dynamic analysis of sandwich structures by the method of finite elements", J. Sound Vib., 18(1), 75-91.   DOI
2 Benjeddou, A. (2018), "Vibration of a honeycomb sandwich structure with an on face bonded macro fiber composite", 1st Int. Conf. Mech. Adv. Mater. Struct., Torino, June.
3 Benjeddou, A. and Hamdi, M. (2016), "Robust inverse identification of the effective three-dimensional elastic behaviour of a piezoceramic patch bonded to a multilayer unidirectional fiber composite", Compos. Struct., 151, 58-69.   DOI
4 Benjeddou, A., Hamdi, M. and Ghanmi, S. (2013), "Robust inverse identification of piezoelectric and dielectric effective behaviors of a bonded patch to a composite plate", Smart Struct. Syst., 12(5), 523-545.   DOI
5 Bert, C.W. (1967), "Natural frequencies of vibration of an all-clamped rectangular sandwich panel". J. Appl. Mech., 34(1), 250-252.   DOI
6 Boudjemai, A., Amri, R., Mankour, A., Salem, H., Bouanane, M.H. and Boutchicha, D.B. (2012), "Modal analysis and testing of hexagonal honeycomb plates used for satellite structural design", Mater. Des., 35, 266-275.   DOI
7 Birman, V. and Kardomateas, G.A. (2018), "Review of current trends in research and applications of sandwich structures", Compos. Pt. B, 142, 221-240.   DOI
8 Chenini, I., Nasri, R., Mrad, C. and Abdelli, Y. (2017), "Kinematics effect on honeycomb sandwich beams vibration", Mech. Ind., 18, 302-314.   DOI
9 Burton, W.S. and Noor, A.K. (1997), "Assessment of continuum models for sandwich panel honeycomb cores", Comput. Methods Appl. Mech. Engrg., 145, 341-360.   DOI
10 Chamis, C., Aiello, R. and Murthy, P. (1988), "Fiber composite sandwich thermo-structural behavior: Computational simulation", J. Compos. Tech. Res., 10(3), 1988, 93-99.   DOI
11 Chevallier, G., Ghorbel, S. and Benjeddou, A. (2009), "Piezoceramic shunted damping concept: Testing, modelling and correlation", Mech. Indust., 10(5), 397-411.
12 Guerich, M. and Assaf, S. (2013), "Optimization of noise transmission through sandwich structures", J. Vib. Acoust., 135(5), 051010-1-051010-13.   DOI
13 Hamdi, M. and Benjeddou, A. (2017), "Robust multi-objective evolutionary optimization-based inverse identification of three-dimensional elastic behaviour of multilayer unidirectional fibre composites", Smart Structures and Materials, Computational Methods in Applied Sciences, Vol. 43, 267-293, Springer Publishing, New York, U.S.A.   DOI
14 Hamdi, M., Ghanmi, S., Benjeddou, A. and Nasri, R. (2014), "Robust electromechanical finite element updating for piezoelectric structures effective coupling prediction", J. Intell. Mater. Syst. Struct., 25(2), 137-154.   DOI
15 Li, D.H., Liu, Y. and Zhang, X. (2013), "Linear statics and free vibration sensitivity analysis of the composite sandwich plates based on a layer-wise/solid-element method", Compos. Struct., 106, 175-200.   DOI
16 Sakar, G. and Bolat, F.C. (2015), "The free vibration analysis of honeycomb sandwich beam using 3D and continuum Model", Int. J. Mech., Aerosp., Ind., Mechatro. Manufact. Engrg., 9(6), 1061-1065.
17 Liu, Q. and Zhao, Y. (2002), "Role of anisotropic core in vibration properties of honeycomb sandwich panels", J. Thermoplastic Compos. Mater., 15, 23-32.   DOI
18 Noor, A.K., Burton, W.S. and Bert, C.W. (1996), "Computational models for sandwich panels and shells", Appl. Mech. Rev., 49(3), 155-199.   DOI
19 Raville, M.E. and Ueng, C.E.S. (1967), "Determination of natural frequencies of vibration of a sandwich plate", Exper. Mech., 7(11), 490-493.   DOI
20 Sairajan, K.K., Aglietti, G.S. and Mani, K.M. (2016), "Review of multifunctional structure technology for aerospace applications", Acta Astronautica, 120, 30-42.   DOI
21 Sayyad, A.A. and Ghugal, Y.M. (2015), "On the free vibration analysis of laminated composite and sandwich plates: A review of recent literature with some numerical results", Compos. Struct., 129, 177-201.   DOI
22 Ueng, C.E.S. (1966), "Natural frequencies of vibration of an all-clamped rectangular sandwich panel", J. Appl. Mech., 33(3), 683-684.   DOI
23 Vinson, J.R. (2001), "Sandwich structures", Appl. Mech. Rev., 49(3), 155-199.   DOI
24 Yongqiang, L. and Dawei, Z. (2009), "Free flexural vibration analysis of symmetric rectangular honeycomb panels using the improved Reddy's third-order plate theory", Compos. Struct., 88, 33-39.   DOI
25 Yu, S.D. and Cleghorn, W.L. (2005), "Free flexural vibration analysis of symmetric honeycomb panels", J. Sound Vib., 284, 189-204.   DOI
26 Yongqiang, L. and Zhiqiang, J. (2008), "Free flexural vibration analysis of symmetric rectangular honeycomb panels with SCSC edge supports", Compos. Struct., 83, 154-158.   DOI
27 Mackerle, J. (2002), "Finite element analyses of sandwich structures: A bibliography (1980-2001)", Engrg. Comput., 19(2), 206-245.   DOI