• Title/Summary/Keyword: homogeneous functions

Search Result 174, Processing Time 0.023 seconds

COEFFICIENT BOUNDS FOR CLOSE-TO-CONVEX FUNCTIONS ASSOCIATED WITH VERTICAL STRIP DOMAIN

  • Bulut, Serap
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.789-797
    • /
    • 2020
  • By considering a certain univalent function in the open unit disk 𝕌, that maps 𝕌 onto a strip domain, we introduce a new class of analytic and close-to-convex functions by means of a certain non-homogeneous Cauchy-Euler-type differential equation. We determine the coefficient bounds for functions in this new class. Relevant connections of some of the results obtained with those in earlier works are also provided.

ON THE VALUE DISTRIBUTION OF DIFFERENTIAL POLYNOMIALS

  • Bhoosnurmath, Subhas S.;Kulkarni, Milind Narayanrao;Yu, Kit-Wing
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.3
    • /
    • pp.427-435
    • /
    • 2008
  • In this paper we consider the problem of whether certain homogeneous or non-homogeneous differential polynomials in f(z) necessarily have infinitely many zeros. Particularly, this extends a result of Gopalakrishna and Bhoosnurmath [3, Theorem 2] for a general differential polynomial of degree $\bar{d}$(P) and lower degree $\underline{d}$(P).

[ $L^p$ ] NORM INEQUALITIES FOR AREA FUNCTIONS WITH APPROACH REGIONS

  • Suh, Choon-Serk
    • East Asian mathematical journal
    • /
    • v.21 no.1
    • /
    • pp.41-48
    • /
    • 2005
  • In this paper we first introduce a space of homogeneous type X, and then consider a kind of generalized upper half-space $X{\times}(0,\;\infty)$. We are mainly considered with inequalities for the $L^p$ norms of area functions associated with approach regions in $X{\times}(0,\;\infty)$.

  • PDF

UNIQUENESS OF HOMOGENEOUS DIFFERENTIAL POLYNOMIALS CONCERNING WEAKLY WEIGHTED-SHARING

  • Pramanik, Dilip Chandra;Roy, Jayanta
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.439-449
    • /
    • 2019
  • In 2006, S. Lin and W. Lin introduced the definition of weakly weighted-sharing of meromorphic functions which is between "CM" and "IM". In this paper, using the notion of weakly weighted-sharing, we study the uniqueness of nonconstant homogeneous differential polynomials P[f] and P[g] generated by meromorphic functions f and g, respectively. Our results generalize the results due to S. Lin and W. Lin, and H.-Y. Xu and Y. Hu.

CERTAIN FORM OF HILBERT-TYPE INEQUALITY USING NON-HOMOGENEOUS KERNEL OF HYPERBOLIC FUNCTIONS

  • Santosh Kaushik;Satish Kumar
    • Korean Journal of Mathematics
    • /
    • v.31 no.2
    • /
    • pp.189-201
    • /
    • 2023
  • In this article, we establish Hilbert-type integral inequalities with the help of a non-homogeneous kernel of hyperbolic function with best constant factor. We also study the obtained inequalities's equivalent form. Additionaly, several specific Hilbert's type inequalities with constant factors in the term of the rational fraction expansion of higher order derivatives of cotangent and cosine functions are presented.

Natural Frequency of a Rectangular Plate on Non-homogeneous Elastic Foundations (비균질 탄성 기초위에 놓여있는 직사각형 평판의 고유 진동수)

  • Hwang, Ju-Ik;Kim, Yong-Cheol;Lee, Taek-Sun
    • Journal of Ocean Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.570-570
    • /
    • 1989
  • The natural frequencies of a rectangular plate on non-homogeneous elastic foundations were obtained by using the Ritz method and Galerkin method. The results of both methods using the different type of trial functions were also compared. Furthermore, the effects of the variation of boundary conditions, the stiffness of the foundation spring, the dimension ratio of the plate were investigated. As a result, the Galerkin method can be used to obtain the accurate solution and can be effectively used to design the foundation bed.