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UNIQUENESS OF HOMOGENEOUS DIFFERENTIAL

POLYNOMIALS CONCERNING WEAKLY

WEIGHTED-SHARING

Dilip Chandra Pramanik and Jayanta Roy

Abstract. In 2006, S. Lin and W. Lin introduced the definition of weakly
weighted-sharing of meromorphic functions which is between “CM” and

“IM”. In this paper, using the notion of weakly weighted-sharing, we

study the uniqueness of nonconstant homogeneous differential polynomi-
als P [f ] and P [g] generated by meromorphic functions f and g, respec-

tively. Our results generalize the results due to S. Lin and W. Lin, and
H.-Y. Xu and Y. Hu.

1. Introduction and main result

Let C denote the complex plane and let f(z) be a nonconstant meromorphic
function defined on C. We assume that the reader is familiar with the standard
definitions and notions used in the Nevanlinna value distribution theory, such
as T (r, f),m(r, f), N(r, f) (see [1, 6, 7]). By S(r, f) we denote any quantity
satisfying the condition S(r, f) = ◦(T (r, f)) as r → ∞ possibly outside an
exceptional set of finite linear measure. A meromorphic function a(z) is called
a small function with respect to f(z) if either a ≡ ∞ or T (r, a) = S(r, f). We
denote by S(f) the collection of all small functions with respect to f . Clearly
C ∪ {∞} ⊂ S(f) and S(f) is a field over the set of complex numbers. For
a ∈ C ∪ {∞} the quantities

δ(a, f) = 1− lim sup
r→∞

N(r, a; f)

T (r, f)

and

Θ(a, f) = 1− lim sup
r→∞

N(r, a; f)

T (r, f)
.

are respectively called the deficiency and ramification index of a for the function
f .
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For any two nonconstant meromorphic functions f and g, and a ∈ S(f) ∩
S(g), we say that f and g share a IM (CM) provided that f −a and g−a have
the same zeros ignoring (counting) multiplicities. If 1

f and 1
g share 0 IM (CM),

we say that f and g share ∞ IM (CM).

Definition 1.1. Let k be a nonnegative integer or infinity and a(z) ∈ S(f).
We denote by Ek(a, f) the set of all zeros of f − a, where a zero of multiplicity
m is counted m times if m ≤ k and k + 1 times if m > k. If Ek(a, f) =
Ek(a, g), we say that f, g share the function a(z) with weight k. We write f
and g share (a, k) to mean that f and g share the function a(z) with weight
k. Since Ek(a, f) = Ek(a, g) implies that El(a, f) = El(a, g) for any integer
l (0 ≤ l < k), if f, g share (a, k), then f, g share (a, l), (0 ≤ l < k). Moreover,
we note that f and g share the function a(z) IM or CM if and only if f and g
share (a, 0) or (a,∞) respectively.

Definition 1.2 ([3]). LetNE(r, a) be the counting function of all common zeros
of f − a and g − a with the same multiplicities, and N0(r, a) be the counting
function of all common zeros of f−a and g−a ignoring multiplicities. Denote by
NE(r, a) and N0(r, a) the reduced counting functions of f and g corresponding
to the counting functions NE(r, a) and N0(r, a) respectively. If

N(r, a; f) +N(r, a; g)− 2NE(r, a) = S(r, f) + S(r, g),

then we say that f and g share a “CM”. If

N(r, a; f) +N(r, a; g)− 2N0(r, a) = S(r, f) + S(r, g),

then we say that f and g share a “IM”.

Let k be a positive integer, and let f be a meromorphic function and a ∈
S(f).

(i) Nk)(r, a; f) denotes the counting function of those a-points of f whose
multiplicities are not greater than k, where each a-point is counted only once.

(ii) N (k(r, a; f) denotes the counting function of those a-points of f whose
multiplicities are not less than k, where each a-point is counted only once.

(iii) Np(r, a; f) denotes the counting function of those a-points of f , where
an a-point of f with multiplicity m counted m times if m ≤ p and p times if
m > p.

We denote by δp(a, f) the quantity

δp(a, f) = 1− lim sup
r→∞

Np(r, a; f)

T (r, f)
,

where p is a positive integer. Clearly δp(a, f) ≥ δ(a, f).
Let f and g be two nonconstant meromorphic functions sharing a “IM” for

a ∈ S(f) ∩ S(g), and a positive integer k or ∞.

(i)N
E

k)(r, a) denotes the counting function of those a-points of f whose multi-
plicities are equal to the corresponding a-points of g, both of their multiplicities
are not greater than k, where each a-point is counted only once.



UNIQUENESS OF HOMOGENEOUS DIFFERENTIAL POLYNOMIALS 441

(ii) N
0

(k(r, a) denotes the reduced counting function of those a-points of f
which are a-points of g, both of their multiplicities are not less than k, where
each a-point is counted only once.

Definition 1.3 ([3]). For a ∈ S(f) ∩ S(g), if k is a positive integer or ∞, and

Nk)(r, a; f) +Nk)(r, a; g)− 2N
E

k)(r, a) = S(r, f) + S(r, g),

N (k+1(r, a; f) +N (k+1(r, a; g)− 2N
0

(k+1(r, a) = S(r, f) + S(r, g)

or if k = 0 and

N(r, a; f) +N(r, a; g)− 2N0(r, a) = S(r, f) + S(r, g),

then we say f and g weakly share a with weight k. Here, we write f , g share
“(a, k)” to mean that f , g weakly share a with weight k.

Obviously if f and g share “(a, k)”, then f and g share “(a, p)” for any
p (0 ≤ p ≤ k). Also, we note that f and g share a “IM” or “CM” if and only
if f and g share “(a, 0)” or “(a,∞)”, respectively.

Suppose F and G share 1 “IM”. By NL(r, 1;F ) we denotes the counting
function of the 1-points of F whose multiplicities are greater than 1-points of
G. NL(r, 1;G) is defined similarly.

Definition 1.4. Let f be a nonconstant meromorphic function. An expression
of the form

(1.1) P [f ] =

n∑
k=1

ak

p∏
j=0

(
f (j)

)lkj

,

where ak ∈ S(f) for k = 1, 2, . . . , n and lkj are nonnegative integers for k =
1, 2, . . . , n; j = 0, 1, 2, . . . , p and d =

∑p
j=0 lkj for k = 1, 2, . . . , n, is called

a homogeneous differential polynomial of degree d generated by f . Also we
denote by Q the quantity Q = max1≤k≤n

∑p
j=0 j.lkj .

In 2006 S. Lin and W. Lin [3] first defined and used the concept of weakly-
weighted sharing of functions to prove the uniqueness of a meromorphic func-
tion and its derivative and proved the following theorems:

Theorem 1.1. Let n ≥ 1 and 2 ≤ k ≤ ∞, let f be a nonconstant meromorphic
function, a ∈ S(f) and a 6≡ 0,∞. If f and f (n) share “(a, k)” and

4Θ(∞, f) + 2δ2+n(0, f) > 5,

then f ≡ f (n).

Theorem 1.2. Let n ≥ 1 and let f be a nonconstant meromorphic function,
a ∈ S(f) and a 6≡ 0,∞. If f and f (n) share “(a, 1)” and(

n+ 9

2

)
Θ(∞, f) +

5

2
δ2+n(0, f) >

n

2
+ 6,

then f ≡ f (n).
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Theorem 1.3. Let n ≥ 1 and let f be a nonconstant meromorphic function,
a ∈ S(f) and a 6≡ 0,∞. If f and f (n) share “(a, 0)” and

(7 + 2n)Θ(∞, f) + 5δ2+n(0, f) > 2n+ 11,

then f ≡ f (n).

Later in 2011, H.-Y. Xu and Y. Hu [4] generalize Theorems 1.1–1.3 by prov-
ing the following theorems:

Theorem 1.4. Let n ≥ 1 and 2 ≤ k ≤ ∞, let f be a nonconstant meromorphic
function, a ∈ S(f) and a 6≡ 0,∞. Suppose L(f) = f (n)+an−1f

(n−1)+· · ·+a0f .
If f and L(f) share “(a, k)” and

4Θ(∞, f) + 2δ2+n(0, f) > 5,

then f ≡ L(f).

Theorem 1.5. Let n ≥ 1, let f be a nonconstant meromorphic function, a ∈
S(f) and a 6≡ 0,∞. Suppose L(f) be defined as in Theorem 1.4. If f and L(f)
share “(a, 1)” and(

7

2
+ n

)
Θ(∞, f) +

3

2
δ2(0, f) + δn+2(0, f) > n+ 5,

then f ≡ L(f).

Theorem 1.6. Let n ≥ 1, let f be a nonconstant meromorphic function, a ∈
S(f) and a 6≡ 0,∞. Suppose L(f) be defined as in Theorem 1.4. If f and L(f)
share “(a, 0)” and

(6 + 2n)Θ(∞, f) + δ2(0, f) + 2Θ(0, f) + 2δ2+n(0, f) > 2n+ 10,

then f ≡ L(f).

Motivated by such uniqueness investigation, it is natural to consider the
problem in a more general setting: Let f and g be any two nonconstant mero-
morphic functions, P [f ] and P [g] be nonconstant homogeneous differential
polynomials of f and g respectively, and a(z) ∈ S(f) ∩ S(g), a 6≡ 0,∞. If
P [f ] and P [g] share “(a, k)”, then what will be the relation between P [f ] and
P [g]? In this paper we prove that under certain conditions either P [f ] ≡ P [g]
or P [f ].P [g] ≡ a2.

Now, we state the main result of this paper.

Theorem 1.7. Let f and g be two transcendental meromorphic functions,
a = a(z) (a 6≡ 0,∞) ∈ S(f) ∩ S(g). Suppose P [f ] and P [g], defined by (1.1)
are nonconstant. If P [f ] and P [g] share “(a, k)” with one of the following
conditions:

(i) k ≥ 2 and

min {(Q+ 4)Θ(∞, f) + 2δ2+p(0, f), (Q+ 4)Θ(∞, g) + 2δ2+p(0, g)}(1.2)

> 6 +Q− d,
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(ii) k = 1 and

min {(3Q+ 9)Θ(∞, f) + 5δ2+p(0, f), (3Q+ 9)Θ(∞, g) + 5δ2+p(0, g)}(1.3)

> 3Q+ 14− 2d,

(iii) k = 0 and

min {(4Q+ 7)Θ(∞, f) + 5δ2+p(0, f), (4Q+ 7)Θ(∞, g) + 5δ2+p(0, g)}(1.4)

> 4Q+ 12− d,

then either P [f ] ≡ P [g] or P [f ].P [g] ≡ a2.

2. Lemmas

In this section we present some lemmas which will needed in the sequel.

Lemma 2.1 ([2]). Let f be a nonconstant meromorphic function and P [f ] be
defined by (1.1). Then

N(r,∞;P ) ≤ dN(r,∞; f) +QN(r,∞; f) + S(r, f).

Lemma 2.2. Let f be a transcendental meromorphic function and P [f ] be
same as in (1.1). If P [f ] 6≡ 0, then we have

(i) N2(r, 0;P ) ≤ N2+p(r, 0; f) +QN(r,∞; f) + S(r, f),
(ii) N2(r, 0;P ) ≤ N2+p(r, 0; f) + T (r, P )− dT (r, f) + S(r, f).

Proof.

N2(r, 0;P ) ≤ N(r, 0;P )−
∞∑
k=3

N(r, 0;P | ≥ k)

= T (r, P )−m(r, 0;P )−
∞∑
k=3

N(r, 0;P | ≥ k) +O(1)

≤ T (r, P )−m(r, 0; fd) +m(r,∞;
P

fd
)−

∞∑
k=3

N(r, 0;P | ≥ k) +O(1)

≤ T (r, P )− dT (r, f) +N(r, 0; fd)−
∞∑
k=3

N(r, 0;P | ≥ k) + S(r, f)

≤ T (r, P )− dT (r, f) +N2+p(r, 0; fd)

+

∞∑
k=3+p

N(r, 0; fd| ≥ k)−
∞∑
k=3

N(r, 0;P | ≥ k) + S(r, f)

≤ T (r, P )− dT (r, f) +N2+p(r, 0; f) + S(r, f).

This proves (ii).
Now using Lemma 2.1 we have,

T (r, P ) = N(r,∞;P ) +m(r,∞;P )



444 D. C. PRAMANIK AND J. ROY

≤ m(r,∞; fd) +m(r,∞;
P

fd
) +N(r,∞;P )

= dm(r,∞; f) +N(r,∞;P ) + S(r, f)

≤ dm(r,∞; f) + dN(r,∞; f) +QN(r,∞; f) + S(r, f)

≤ dT (r, f) +QN(r,∞; f) + S(r, f).

Therefore, N2(r, 0;P ) ≤ N2+p(r, 0; f) +QN(r,∞; f) + S(r, f). �

Lemma 2.3 ([3]). Let k be a nonnegative integer or infinity, F and G be
nonconstant meromorphic functions, F and G share “(1, k)”. Let

H =

(
F (2)

F (1)
− 2

F (1)

F − 1

)
−
(
G(2)

G(1)
− 2

G(1)

G− 1

)
.

If H 6≡ 0, then
(i) If 2 ≤ k ≤ ∞, then

T (r, F ) ≤ N2(r,∞;F ) +N2(r,∞;G) +N2(r, 0;F ) +N2(r, 0;G)

+ S(r, F ) + S(r,G).

(ii) If k = 1, then

T (r, F ) ≤ N2(r,∞;F ) +N2(r,∞;G) +N2(r, 0;F ) +N2(r, 0;G)

+NL(r, 1;F ) + S(r, F ) + S(r,G).

(iii) If k = 0, then

T (r, F ) ≤ N2(r,∞;F ) +N2(r,∞;G) +N2(r, 0;F ) +N2(r, 0;G)

+ 2NL(r, 1;F ) +NL(r, 1;G) + S(r, F ) + S(r,G).

The same inequality holds for T (r,G).

Lemma 2.4 ([4]). Let F and G be nonconstant meromorphic functions such
that F and G share “(1, 1)”. Then

NL(r, 1;F ) ≤ 1

2
N(r, 0;F ) +

1

2
N(r,∞;F ) + S(r, F ).

Lemma 2.5 ([4]). Let F and G be nonconstant meromorphic functions such
that F and G share “(1, 0)”. Then

NL(r, 1;F ) ≤ N(r,∞;F ) +N(r, 0;F ) + S(r, F ).

Lemma 2.6 ([5]). Let f be a nonconstant meromorphic function and let

p(f) = anf
n + an−1f

n−1 + · · ·+ a1f + a0,

where ai ∈ S(f) for i = 0, 1, . . . , n; an 6= 0 be a polynomial of degree n. Then
T (r, p(f)) = nT (r, f) + S(r, f).
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3. Proof of the main theorem

Proof of Theorem 1.7. Let

F =
P [f ]

a
, G =

P [g]

a
.

Since P [f ] and P [g] share “(a, k)”, it follows that F , G share “(1, k)” except
at the zeros and poles of a.

Let H be same as in Lemma 2.3. Suppose that H 6≡ 0.
Now we consider the following three cases:
Case 1: 2 ≤ k ≤ ∞.
From (i) of Lemma 2.3

T (r, F ) ≤ N2(r,∞;F ) +N2(r,∞;G) +N2(r, 0;F ) +N2(r, 0;G)

+ S(r, F ) + S(r,G).

Using Lemma 2.2

T (r, F ) ≤ 2N(r,∞;F ) + 2N(r,∞;G) + T (r, F )− dT (r, f) +N2+p(r, 0; f)

+QN(r,∞; g) +N2+p(r, 0; g) + S(r, F ) + S(r,G)

and so

dT (r, f) ≤ 2N(r,∞; f) +N2+p(r, 0; f) + (2 +Q)N(r,∞; g)

+N2+p(r, 0; g) + S(r, f) + S(r, g).(3.1)

Similarly,

dT (r, g) ≤ 2N(r,∞; g) +N2+p(r, 0; g) + (2 +Q)N(r,∞; f)

+N2+p(r, 0; f) + S(r, f) + S(r, g).(3.2)

Adding (3.1) and (3.2)

dT (r, f) + dT (r, g) ≤ 2N2+p(r, 0; f) + (Q+ 4)N(r,∞; f) + 2N2+p(r, 0; g)

+ (Q+ 4)N(r,∞; g) + S(r, f) + S(r, g)

⇒ {2δ2+p(0, f) + (Q+ 4)Θ(∞, f)− (6 +Q− d)}T (r, f)

+ {2δ2+p(0, g) + (Q+ 4)Θ(∞, g)− (6 +Q− d)}T (r, g)

≤ S(r, f) + S(r, g).

Which contradict our hypothesis (1.2).
Thus H ≡ 0. That is(

F (2)

F (1)
− 2

F (1)

F − 1

)
=

(
G(2)

G(1)
− 2

G(1)

G− 1

)
⇒ 1

G− 1
=

A

F − 1
+B,

where A 6= 0 and B are constants.
Thus

(3.3) G =
(B + 1)F + (A−B − 1)

BF + (A−B)
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and

(3.4) F =
(B −A)G+ (A−B − 1)

BG− (B + 1)
.

Next we consider following three subcases:
Subcase 1. B 6= 0,−1. Then from (3.4) we have

N(r,
B + 1

B
;G) = N(r,∞;F ).

By Nevanlinna second fundamental theorem and (ii) of Lemma 2.2 we get

T (r,G) ≤ N(r,∞;G) +N(r, 0;G) +N(r,
B + 1

B
;G) + S(r,G)

≤ N(r,∞;G) +N(r, 0;G) +N(r,∞;F ) + S(r,G)

≤ N(r,∞;G) + T (r,G)− dT (r, g) +N2+p(r, 0; g)

+N(r,∞;F ) + S(r,G),

i.e.,

(3.5) dT (r, g) ≤ N(r,∞; f) +N2+p(r, 0; g) +N(r,∞; g) + S(r, f) + S(r, g).

If A−B − 1 6= 0, then it follows from (3.3) that

N(r,
−A+B + 1

B + 1
;F ) = N(r, 0;G).

Again by Nevanlinna second fundamental theorem and Lemma 2.2

T (r, F ) ≤ N(r,∞;F ) +N(r, 0;F ) +N(r,
−A+B + 1

B + 1
;F ) + S(r, F )

⇒ dT (r, f) ≤ N(r,∞; f) +N2+p(r, 0; f) +QN(r,∞; g) +N2+p(r, 0; g)

+ S(r, f) + S(r, g).(3.6)

Combining (3.5) and (3.6)

dT (r, f) + dT (r, g) ≤ N2+p(r, 0; f) + 2N(r,∞; f) + 2N2+p(r, 0; g)

+ (Q+ 1)N(r,∞; g) + S(r, f) + S(r, g)

which again contradict (1.2).
Hence A−B − 1 = 0. Then by (3.3)

N(r, 0;F +
1

B
) = N(r,∞;G).

Again by Nevanlinna second fundamental theorem

T (r, F ) ≤ N(r,∞;F ) +N(r, 0;F ) +N(r, 0;F +
1

B
) + S(r, F )

≤ N(r,∞; f) + T (r, F )− dT (r, f) +N2+p(r, 0; f) +N(r,∞; g)

+ S(r, f) + S(r, g),
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i.e.,

(3.7) dT (r, f) ≤ N(r,∞; f) +N2+p(r, 0; f) +N(r,∞; g) + S(r, f) + S(r, g).

Combining (3.5) and (3.7)

dT (r, f) + dT (r, g) ≤ N2+p(r, 0; f) + 2N(r,∞; f) +N2+p(r, 0; g)

+ 2N(r,∞; g) + S(r, f) + S(r, g),

which violates our given assumption.
Subcase 2. B = −1. Then

G =
A

A+ 1− F
and

F =
(1 +A)G−A

G
.

If A+ 1 6= 0, then we obtain

N(r,A+ 1;F ) = N(r,∞;G),

N(r,
A

A+ 1
;G) = N(r, 0;F ).

By similar argument, we have a contradiction.
Therefore, A+ 1 = 0, then

FG = 1 ⇒ P [f ].P [g] ≡ a2.
Subcase 3. B = 0. Then (3.3) and (3.4) gives G = F+A−1

A and F = AG +
1−A.

If A− 1 6= 0, N(r, 0;A− 1 +F ) = N(r, 0;G) and N(r, A−1A ;G) = N(r, 0;F ).
Proceeding similarly as in Subcase 1, we get a contradiction.

Therefore, A− 1 = 0, then F ≡ G, i.e.,

P [f ] ≡ P [g].

This complete the proof of Case 1.
Case 2: k = 1. From (ii) of Lemma 2.3

T (r, F ) ≤ N2(r,∞;F ) +N2(r,∞;G) +N2(r, 0;F ) +N2(r, 0;G) +NL(r, 1;F )

+ S(r, F ) + S(r,G).

Using Lemma 2.2

T (r, F ) ≤ 2N(r,∞;F ) + 2N(r,∞;G) + T (r, F )− dT (r, f) +N2+p(r, 0; f)

+QN(r,∞; g) +N2+p(r, 0; g) +NL(r, 1;F ) + S(r, F ) + S(r,G).

So by Lemma 2.2 and Lemma 2.4

dT (r, f) ≤ 2N(r,∞; f) +N2+p(r, 0; f) + (2 +Q)N(r,∞; g)

+N2+p(r, 0; g) +
1

2
N(r,∞; f) +

1

2
QN(r,∞; f) +

1

2
N2+p(r, 0; f)

+ S(r, f) + S(r, g)
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≤ 5 +Q

2
N(r,∞; f) +

3

2
N2+p(r, 0; f) + (2 +Q)N(r,∞; g)

+N2+p(r, 0; g) + S(r, f) + S(r, g),

i.e.,

dT (r, f) ≤ 5 +Q

2
N(r,∞; f) +

3

2
N2+p(r, 0; f) + (2 +Q)N(r,∞; g)

+N2+p(r, 0; g) + S(r, f) + S(r, g).

Similarly

dT (r, g) ≤ 5 +Q

2
N(r,∞; g) +

3

2
N2+p(r, 0; g) + (2 +Q)N(r,∞; f)

+N2+p(r, 0; f) + S(r, f) + S(r, g).

Adding the above two inequalities we get

dT (r, f) + dT (r, g) ≤ 3Q+ 9

2
N(r,∞; f) +

5

2
N2+p(r, 0; f) +

3Q+ 9

2
N(r,∞; g)

+
5

2
N2+p(r, 0; g) + S(r, f) + S(r, g),

which contradict our hypothesis (1.3).
Proceeding similarly as in Case 1, we get the result for this case.
Case 3: k = 0. From (iii) of Lemma 2.3

T (r, F ) ≤ N2(r,∞;F ) +N2(r,∞;G) +N2(r, 0;F ) +N2(r, 0;G)

+ 2NL(r, 1;F ) +NL(r, 1;G) + S(r, F ) + S(r,G).

Using Lemmas 2.2 and 2.5

T (r, F ) ≤ 2N(r,∞;F ) + 2N(r,∞;G) + T (r, F )− dT (r, f) +N2+p(r, 0; f)

+QN(r,∞; g) +N2+p(r, 0; g) + 2N(r,∞;F ) + 2N(r, 0;F )

+N(r,∞;G) +N(r, 0;G) + S(r, F ) + S(r,G),

i.e.,

dT (r, f) ≤ 4N(r,∞; f) +N2+p(r, 0; f) + (3 +Q)N(r,∞; g)

+N2+p(r, 0; g) + 2QN(r,∞; f) + 2N2+p(r, 0; f)

+QN(r,∞; g) +N2+p(r, 0; g) + S(r, f) + S(r, g)

≤ (4 + 2Q)N(r,∞; f) + 3N2+p(r, 0; f)

+ (3 + 2Q)N(r,∞; g) + 2N2+p(r, 0; g) + S(r, f) + S(r, g).

Similarly,

dT (r, g) ≤ (4 + 2Q)N(r,∞; g) + 3N2+p(r, 0; g)

+ (3 + 2Q)N(r,∞; f) + 2N2+p(r, 0; f) + S(r, f) + S(r, g).



UNIQUENESS OF HOMOGENEOUS DIFFERENTIAL POLYNOMIALS 449

Combining the above two inequalities we get,

dT (r, f) + dT (r, g) ≤ (4Q+ 7)N(r,∞; f) + 5N2+p(r, 0; f)

+ (4Q+ 7)N(r,∞; g) + 5N2+p(r, 0; g)

+ S(r, f) + S(r, g),

which contradict our hypothesis (1.4).
Approaching similarly as in Case 1, we get the result for this case. �
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