UNIQUENESS OF HOMOGENEOUS DIFFERENTIAL POLYNOMIALS CONCERNING WEAKLY WEIGHTED-SHARING

Dilip Chandra Pramanik and Jayanta Roy

Abstract

In 2006, S. Lin and W. Lin introduced the definition of weakly weighted-sharing of meromorphic functions which is between "CM" and "IM". In this paper, using the notion of weakly weighted-sharing, we study the uniqueness of nonconstant homogeneous differential polynomials $P[f]$ and $P[g]$ generated by meromorphic functions f and g, respectively. Our results generalize the results due to S. Lin and W. Lin, and H.-Y. Xu and Y. Hu.

1. Introduction and main result

Let \mathbb{C} denote the complex plane and let $f(z)$ be a nonconstant meromorphic function defined on \mathbb{C}. We assume that the reader is familiar with the standard definitions and notions used in the Nevanlinna value distribution theory, such as $T(r, f), m(r, f), N(r, f)$ (see $[1,6,7]$). By $S(r, f)$ we denote any quantity satisfying the condition $S(r, f)=\circ(T(r, f))$ as $r \rightarrow \infty$ possibly outside an exceptional set of finite linear measure. A meromorphic function $a(z)$ is called a small function with respect to $f(z)$ if either $a \equiv \infty$ or $T(r, a)=S(r, f)$. We denote by $S(f)$ the collection of all small functions with respect to f. Clearly $\mathbb{C} \cup\{\infty\} \subset S(f)$ and $S(f)$ is a field over the set of complex numbers. For $a \in \mathbb{C} \cup\{\infty\}$ the quantities

$$
\delta(a, f)=1-\limsup _{r \rightarrow \infty} \frac{N(r, a ; f)}{T(r, f)}
$$

and

$$
\Theta(a, f)=1-\limsup _{r \rightarrow \infty} \frac{\bar{N}(r, a ; f)}{T(r, f)}
$$

are respectively called the deficiency and ramification index of a for the function f.

Received March 6, 2018; Revised September 5, 2018; Accepted February 8, 2019.
2010 Mathematics Subject Classification. 30D30, 30D35.
Key words and phrases. meromorphic function, weakly weighted share, small function, differential polynomial.

For any two nonconstant meromorphic functions f and g, and $a \in S(f) \cap$ $S(g)$, we say that f and g share a IM (CM) provided that $f-a$ and $g-a$ have the same zeros ignoring (counting) multiplicities. If $\frac{1}{f}$ and $\frac{1}{g}$ share 0 IM (CM), we say that f and g share $\infty \mathrm{IM}$ (CM).
Definition 1.1. Let k be a nonnegative integer or infinity and $a(z) \in S(f)$. We denote by $E_{k}(a, f)$ the set of all zeros of $f-a$, where a zero of multiplicity m is counted m times if $m \leq k$ and $k+1$ times if $m>k$. If $E_{k}(a, f)=$ $E_{k}(a, g)$, we say that f, g share the function $a(z)$ with weight k. We write f and g share (a, k) to mean that f and g share the function $a(z)$ with weight k. Since $E_{k}(a, f)=E_{k}(a, g)$ implies that $E_{l}(a, f)=E_{l}(a, g)$ for any integer $l(0 \leq l<k)$, if f, g share (a, k), then f, g share $(a, l),(0 \leq l<k)$. Moreover, we note that f and g share the function $a(z)$ IM or CM if and only if f and g share $(a, 0)$ or (a, ∞) respectively.

Definition $1.2([3])$. Let $N_{E}(r, a)$ be the counting function of all common zeros of $f-a$ and $g-a$ with the same multiplicities, and $N_{0}(r, a)$ be the counting function of all common zeros of $f-a$ and $g-a$ ignoring multiplicities. Denote by $\bar{N}_{E}(r, a)$ and $\bar{N}_{0}(r, a)$ the reduced counting functions of f and g corresponding to the counting functions $N_{E}(r, a)$ and $N_{0}(r, a)$ respectively. If

$$
\bar{N}(r, a ; f)+\bar{N}(r, a ; g)-2 \bar{N}_{E}(r, a)=S(r, f)+S(r, g),
$$

then we say that f and g share a "CM". If

$$
\bar{N}(r, a ; f)+\bar{N}(r, a ; g)-2 \bar{N}_{0}(r, a)=S(r, f)+S(r, g),
$$

then we say that f and g share a "IM".
Let k be a positive integer, and let f be a meromorphic function and $a \in$ $S(f)$.
(i) $\bar{N}_{k)}(r, a ; f)$ denotes the counting function of those a-points of f whose multiplicities are not greater than k, where each a-point is counted only once.
(ii) $\bar{N}_{(k}(r, a ; f)$ denotes the counting function of those a-points of f whose multiplicities are not less than k, where each a-point is counted only once.
(iii) $N_{p}(r, a ; f)$ denotes the counting function of those a-points of f, where an a-point of f with multiplicity m counted m times if $m \leq p$ and p times if $m>p$.

We denote by $\delta_{p}(a, f)$ the quantity

$$
\delta_{p}(a, f)=1-\limsup _{r \rightarrow \infty} \frac{N_{p}(r, a ; f)}{T(r, f)},
$$

where p is a positive integer. Clearly $\delta_{p}(a, f) \geq \delta(a, f)$.
Let f and g be two nonconstant meromorphic functions sharing a "IM" for $a \in S(f) \cap S(g)$, and a positive integer k or ∞.
(i) $\bar{N}_{k)}^{E}(r, a)$ denotes the counting function of those a-points of f whose multiplicities are equal to the corresponding a-points of g, both of their multiplicities are not greater than k, where each a-point is counted only once.
(ii) $\bar{N}_{(k}^{0}(r, a)$ denotes the reduced counting function of those a-points of f which are a-points of g, both of their multiplicities are not less than k, where each a-point is counted only once.
Definition 1.3 ([3]). For $a \in S(f) \cap S(g)$, if k is a positive integer or ∞, and

$$
\begin{gathered}
\bar{N}_{k)}(r, a ; f)+\bar{N}_{k)}(r, a ; g)-2 \bar{N}_{k)}^{E}(r, a)=S(r, f)+S(r, g), \\
\bar{N}_{(k+1}(r, a ; f)+\bar{N}_{(k+1}(r, a ; g)-2 \bar{N}_{(k+1}^{0}(r, a)=S(r, f)+S(r, g)
\end{gathered}
$$

or if $k=0$ and

$$
\bar{N}(r, a ; f)+\bar{N}(r, a ; g)-2 \bar{N}_{0}(r, a)=S(r, f)+S(r, g)
$$

then we say f and g weakly share a with weight k. Here, we write f, g share " (a, k) " to mean that f, g weakly share a with weight k.

Obviously if f and g share " (a, k) ", then f and g share " (a, p) " for any $p(0 \leq p \leq k)$. Also, we note that f and g share a "IM" or "CM" if and only if f and g share " $(a, 0)$ " or " (a, ∞) ", respectively.

Suppose F and G share 1 "IM". By $\bar{N}_{L}(r, 1 ; F)$ we denotes the counting function of the 1-points of F whose multiplicities are greater than 1-points of G. $\bar{N}_{L}(r, 1 ; G)$ is defined similarly.

Definition 1.4. Let f be a nonconstant meromorphic function. An expression of the form

$$
\begin{equation*}
P[f]=\sum_{k=1}^{n} a_{k} \prod_{j=0}^{p}\left(f^{(j)}\right)^{l_{k j}} \tag{1.1}
\end{equation*}
$$

where $a_{k} \in S(f)$ for $k=1,2, \ldots, n$ and $l_{k j}$ are nonnegative integers for $k=$ $1,2, \ldots, n ; j=0,1,2, \ldots, p$ and $d=\sum_{j=0}^{p} l_{k j}$ for $k=1,2, \ldots, n$, is called a homogeneous differential polynomial of degree d generated by f. Also we denote by Q the quantity $Q=\max _{1 \leq k \leq n} \sum_{j=0}^{p} j \cdot l_{k j}$.

In 2006 S . Lin and W. Lin [3] first defined and used the concept of weaklyweighted sharing of functions to prove the uniqueness of a meromorphic function and its derivative and proved the following theorems:

Theorem 1.1. Let $n \geq 1$ and $2 \leq k \leq \infty$, let f be a nonconstant meromorphic function, $a \in S(f)$ and $a \not \equiv 0, \infty$. If f and $f^{(n)}$ share " (a, k) " and

$$
4 \Theta(\infty, f)+2 \delta_{2+n}(0, f)>5
$$

then $f \equiv f^{(n)}$.
Theorem 1.2. Let $n \geq 1$ and let f be a nonconstant meromorphic function, $a \in S(f)$ and $a \not \equiv 0, \infty$. If f and $f^{(n)}$ share " $(a, 1)$ " and

$$
\left(\frac{n+9}{2}\right) \Theta(\infty, f)+\frac{5}{2} \delta_{2+n}(0, f)>\frac{n}{2}+6
$$

then $f \equiv f^{(n)}$.

Theorem 1.3. Let $n \geq 1$ and let f be a nonconstant meromorphic function, $a \in S(f)$ and $a \not \equiv 0, \infty$. If f and $f^{(n)}$ share " $(a, 0)$ " and

$$
(7+2 n) \Theta(\infty, f)+5 \delta_{2+n}(0, f)>2 n+11
$$

then $f \equiv f^{(n)}$.
Later in 2011, H.-Y. Xu and Y. Hu [4] generalize Theorems 1.1-1.3 by proving the following theorems:
Theorem 1.4. Let $n \geq 1$ and $2 \leq k \leq \infty$, let f be a nonconstant meromorphic function, $a \in S(f)$ and $a \not \equiv 0, \infty$. Suppose $L(f)=f^{(n)}+a_{n-1} f^{(n-1)}+\cdots+a_{0} f$. If f and $L(f)$ share " (a, k) " and

$$
4 \Theta(\infty, f)+2 \delta_{2+n}(0, f)>5
$$

then $f \equiv L(f)$.
Theorem 1.5. Let $n \geq 1$, let f be a nonconstant meromorphic function, $a \in$ $S(f)$ and $a \not \equiv 0, \infty$. Suppose $L(f)$ be defined as in Theorem 1.4. If f and $L(f)$ share " $(a, 1)$ " and

$$
\left(\frac{7}{2}+n\right) \Theta(\infty, f)+\frac{3}{2} \delta_{2}(0, f)+\delta_{n+2}(0, f)>n+5
$$

then $f \equiv L(f)$.
Theorem 1.6. Let $n \geq 1$, let f be a nonconstant meromorphic function, $a \in$ $S(f)$ and $a \not \equiv 0, \infty$. Suppose $L(f)$ be defined as in Theorem 1.4. If f and $L(f)$ share " $(a, 0)$ " and

$$
(6+2 n) \Theta(\infty, f)+\delta_{2}(0, f)+2 \Theta(0, f)+2 \delta_{2+n}(0, f)>2 n+10
$$

then $f \equiv L(f)$.
Motivated by such uniqueness investigation, it is natural to consider the problem in a more general setting: Let f and g be any two nonconstant meromorphic functions, $P[f]$ and $P[g]$ be nonconstant homogeneous differential polynomials of f and g respectively, and $a(z) \in S(f) \cap S(g), a \not \equiv 0, \infty$. If $P[f]$ and $P[g]$ share " (a, k) ", then what will be the relation between $P[f]$ and $P[g]$? In this paper we prove that under certain conditions either $P[f] \equiv P[g]$ or $P[f] . P[g] \equiv a^{2}$.

Now, we state the main result of this paper.
Theorem 1.7. Let f and g be two transcendental meromorphic functions, $a=a(z)(a \not \equiv 0, \infty) \in S(f) \cap S(g)$. Suppose $P[f]$ and $P[g]$, defined by (1.1) are nonconstant. If $P[f]$ and $P[g]$ share " (a, k) " with one of the following conditions:
(i) $k \geq 2$ and
(1.2) $\min \left\{(Q+4) \Theta(\infty, f)+2 \delta_{2+p}(0, f),(Q+4) \Theta(\infty, g)+2 \delta_{2+p}(0, g)\right\}$ $>6+Q-d$,
(ii) $k=1$ and

$$
\begin{align*}
& \min \left\{(3 Q+9) \Theta(\infty, f)+5 \delta_{2+p}(0, f),(3 Q+9) \Theta(\infty, g)+5 \delta_{2+p}(0, g)\right\} \tag{1.3}\\
> & 3 Q+14-2 d,
\end{align*}
$$

(iii) $k=0$ and
(1.4) $\min \left\{(4 Q+7) \Theta(\infty, f)+5 \delta_{2+p}(0, f),(4 Q+7) \Theta(\infty, g)+5 \delta_{2+p}(0, g)\right\}$

$$
>4 Q+12-d,
$$

then either $P[f] \equiv P[g]$ or $P[f] . P[g] \equiv a^{2}$.

2. Lemmas

In this section we present some lemmas which will needed in the sequel.
Lemma 2.1 ([2]). Let f be a nonconstant meromorphic function and $P[f]$ be defined by (1.1). Then

$$
N(r, \infty ; P) \leq d N(r, \infty ; f)+Q \bar{N}(r, \infty ; f)+S(r, f) .
$$

Lemma 2.2. Let f be a transcendental meromorphic function and $P[f]$ be same as in (1.1). If $P[f] \not \equiv 0$, then we have
(i) $N_{2}(r, 0 ; P) \leq N_{2+p}(r, 0 ; f)+Q \bar{N}(r, \infty ; f)+S(r, f)$,
(ii) $N_{2}(r, 0 ; P) \leq N_{2+p}(r, 0 ; f)+T(r, P)-d T(r, f)+S(r, f)$.

Proof.

$$
\begin{aligned}
N_{2}(r, 0 ; P) \leq & N(r, 0 ; P)-\sum_{k=3}^{\infty} \bar{N}(r, 0 ; P \mid \geq k) \\
= & T(r, P)-m(r, 0 ; P)-\sum_{k=3}^{\infty} \bar{N}(r, 0 ; P \mid \geq k)+O(1) \\
\leq & T(r, P)-m\left(r, 0 ; f^{d}\right)+m\left(r, \infty ; \frac{P}{f^{d}}\right)-\sum_{k=3}^{\infty} \bar{N}(r, 0 ; P \mid \geq k)+O(1) \\
\leq & T(r, P)-d T(r, f)+N\left(r, 0 ; f^{d}\right)-\sum_{k=3}^{\infty} \bar{N}(r, 0 ; P \mid \geq k)+S(r, f) \\
\leq & T(r, P)-d T(r, f)+N_{2+p}\left(r, 0 ; f^{d}\right) \\
& +\sum_{k=3+p}^{\infty} \bar{N}\left(r, 0 ; f^{d} \mid \geq k\right)-\sum_{k=3}^{\infty} \bar{N}(r, 0 ; P \mid \geq k)+S(r, f) \\
\leq & T(r, P)-d T(r, f)+N_{2+p}(r, 0 ; f)+S(r, f) .
\end{aligned}
$$

This proves (ii).
Now using Lemma 2.1 we have,

$$
T(r, P)=N(r, \infty ; P)+m(r, \infty ; P)
$$

$$
\begin{aligned}
& \leq m\left(r, \infty ; f^{d}\right)+m\left(r, \infty ; \frac{P}{f^{d}}\right)+N(r, \infty ; P) \\
& =d m(r, \infty ; f)+N(r, \infty ; P)+S(r, f) \\
& \leq d m(r, \infty ; f)+d N(r, \infty ; f)+Q \bar{N}(r, \infty ; f)+S(r, f) \\
& \leq d T(r, f)+Q \bar{N}(r, \infty ; f)+S(r, f)
\end{aligned}
$$

Therefore, $N_{2}(r, 0 ; P) \leq N_{2+p}(r, 0 ; f)+Q \bar{N}(r, \infty ; f)+S(r, f)$.
Lemma 2.3 ([3]). Let k be a nonnegative integer or infinity, F and G be nonconstant meromorphic functions, F and G share " $(1, k)$ ". Let

$$
H=\left(\frac{F^{(2)}}{F^{(1)}}-2 \frac{F^{(1)}}{F-1}\right)-\left(\frac{G^{(2)}}{G^{(1)}}-2 \frac{G^{(1)}}{G-1}\right)
$$

If $H \not \equiv 0$, then
(i) If $2 \leq k \leq \infty$, then

$$
\begin{aligned}
T(r, F) \leq & N_{2}(r, \infty ; F)+N_{2}(r, \infty ; G)+N_{2}(r, 0 ; F)+N_{2}(r, 0 ; G) \\
& +S(r, F)+S(r, G)
\end{aligned}
$$

(ii) If $k=1$, then

$$
\begin{aligned}
T(r, F) \leq & N_{2}(r, \infty ; F)+N_{2}(r, \infty ; G)+N_{2}(r, 0 ; F)+N_{2}(r, 0 ; G) \\
& +\bar{N}_{L}(r, 1 ; F)+S(r, F)+S(r, G)
\end{aligned}
$$

(iii) If $k=0$, then

$$
\begin{aligned}
T(r, F) \leq & N_{2}(r, \infty ; F)+N_{2}(r, \infty ; G)+N_{2}(r, 0 ; F)+N_{2}(r, 0 ; G) \\
& +2 \bar{N}_{L}(r, 1 ; F)+\bar{N}_{L}(r, 1 ; G)+S(r, F)+S(r, G)
\end{aligned}
$$

The same inequality holds for $T(r, G)$.
Lemma 2.4 ([4]). Let F and G be nonconstant meromorphic functions such that F and G share " $(1,1)$ ". Then

$$
\bar{N}_{L}(r, 1 ; F) \leq \frac{1}{2} \bar{N}(r, 0 ; F)+\frac{1}{2} \bar{N}(r, \infty ; F)+S(r, F) .
$$

Lemma 2.5 ([4]). Let F and G be nonconstant meromorphic functions such that F and G share " $(1,0)$ ". Then

$$
\bar{N}_{L}(r, 1 ; F) \leq \bar{N}(r, \infty ; F)+\bar{N}(r, 0 ; F)+S(r, F) .
$$

Lemma 2.6 ([5]). Let f be a nonconstant meromorphic function and let

$$
p(f)=a_{n} f^{n}+a_{n-1} f^{n-1}+\cdots+a_{1} f+a_{0}
$$

where $a_{i} \in S(f)$ for $i=0,1, \ldots, n ; a_{n} \neq 0$ be a polynomial of degree n. Then $T(r, p(f))=n T(r, f)+S(r, f)$.

3. Proof of the main theorem

Proof of Theorem 1.7. Let

$$
F=\frac{P[f]}{a}, G=\frac{P[g]}{a} .
$$

Since $P[f]$ and $P[g]$ share " (a, k) ", it follows that F, G share " $(1, k)$ " except at the zeros and poles of a.

Let H be same as in Lemma 2.3. Suppose that $H \not \equiv 0$.
Now we consider the following three cases:
Case 1: $2 \leq k \leq \infty$.
From (i) of Lemma 2.3

$$
\begin{aligned}
T(r, F) \leq & N_{2}(r, \infty ; F)+N_{2}(r, \infty ; G)+N_{2}(r, 0 ; F)+N_{2}(r, 0 ; G) \\
& +S(r, F)+S(r, G)
\end{aligned}
$$

Using Lemma 2.2

$$
\begin{aligned}
T(r, F) \leq & 2 \bar{N}(r, \infty ; F)+2 \bar{N}(r, \infty ; G)+T(r, F)-d T(r, f)+N_{2+p}(r, 0 ; f) \\
& +Q \bar{N}(r, \infty ; g)+N_{2+p}(r, 0 ; g)+S(r, F)+S(r, G)
\end{aligned}
$$

and so

$$
\begin{align*}
d T(r, f) \leq & 2 \bar{N}(r, \infty ; f)+N_{2+p}(r, 0 ; f)+(2+Q) \bar{N}(r, \infty ; g) \\
& +N_{2+p}(r, 0 ; g)+S(r, f)+S(r, g) . \tag{3.1}
\end{align*}
$$

Similarly,

$$
\begin{align*}
d T(r, g) \leq & 2 \bar{N}(r, \infty ; g)+N_{2+p}(r, 0 ; g)+(2+Q) \bar{N}(r, \infty ; f) \\
& +N_{2+p}(r, 0 ; f)+S(r, f)+S(r, g) \tag{3.2}
\end{align*}
$$

Adding (3.1) and (3.2)

$$
\begin{aligned}
& d T(r, f)+ d T(r, g) \leq \\
& 2 N_{2+p}(r, 0 ; f)+(Q+4) \bar{N}(r, \infty ; f)+2 N_{2+p}(r, 0 ; g) \\
&+(Q+4) \bar{N}(r, \infty ; g)+S(r, f)+S(r, g) \\
& \Rightarrow \quad\left\{2 \delta_{2+p}(0, f)+(Q+4) \Theta(\infty, f)-(6+Q-d)\right\} T(r, f) \\
&+\left.+2 \delta_{2+p}(0, g)+(Q+4) \Theta(\infty, g)-(6+Q-d)\right\} T(r, g) \\
& \leq S(r, f)+S(r, g) .
\end{aligned}
$$

Which contradict our hypothesis (1.2).
Thus $H \equiv 0$. That is

$$
\left(\frac{F^{(2)}}{F^{(1)}}-2 \frac{F^{(1)}}{F-1}\right)=\left(\frac{G^{(2)}}{G^{(1)}}-2 \frac{G^{(1)}}{G-1}\right) \Rightarrow \frac{1}{G-1}=\frac{A}{F-1}+B,
$$

where $A \neq 0$ and B are constants.
Thus

$$
\begin{equation*}
G=\frac{(B+1) F+(A-B-1)}{B F+(A-B)} \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
F=\frac{(B-A) G+(A-B-1)}{B G-(B+1)} \tag{3.4}
\end{equation*}
$$

Next we consider following three subcases:
Subcase 1. $B \neq 0,-1$. Then from (3.4) we have

$$
\bar{N}\left(r, \frac{B+1}{B} ; G\right)=\bar{N}(r, \infty ; F) .
$$

By Nevanlinna second fundamental theorem and (ii) of Lemma 2.2 we get

$$
\begin{aligned}
T(r, G) \leq & \bar{N}(r, \infty ; G)+\bar{N}(r, 0 ; G)+\bar{N}\left(r, \frac{B+1}{B} ; G\right)+S(r, G) \\
\leq & \bar{N}(r, \infty ; G)+\bar{N}(r, 0 ; G)+\bar{N}(r, \infty ; F)+S(r, G) \\
\leq & \bar{N}(r, \infty ; G)+T(r, G)-d T(r, g)+N_{2+p}(r, 0 ; g) \\
& +\bar{N}(r, \infty ; F)+S(r, G),
\end{aligned}
$$

i.e.,
(3.5) $d T(r, g) \leq \bar{N}(r, \infty ; f)+N_{2+p}(r, 0 ; g)+\bar{N}(r, \infty ; g)+S(r, f)+S(r, g)$.

If $A-B-1 \neq 0$, then it follows from (3.3) that

$$
\bar{N}\left(r, \frac{-A+B+1}{B+1} ; F\right)=\bar{N}(r, 0 ; G) .
$$

Again by Nevanlinna second fundamental theorem and Lemma 2.2

$$
\begin{align*}
& \quad T(r, F) \leq \bar{N}(r, \infty ; F)+\bar{N}(r, 0 ; F)+\bar{N}\left(r, \frac{-A+B+1}{B+1} ; F\right)+S(r, F) \\
& \Rightarrow \quad d T(r, f) \leq \bar{N}(r, \infty ; f)+N_{2+p}(r, 0 ; f)+Q \bar{N}(r, \infty ; g)+N_{2+p}(r, 0 ; g) \\
& \quad+S(r, f)+S(r, g) . \tag{3.6}
\end{align*}
$$

Combining (3.5) and (3.6)

$$
\begin{aligned}
d T(r, f)+d T(r, g) \leq & N_{2+p}(r, 0 ; f)+2 \bar{N}(r, \infty ; f)+2 N_{2+p}(r, 0 ; g) \\
& +(Q+1) \bar{N}(r, \infty ; g)+S(r, f)+S(r, g)
\end{aligned}
$$

which again contradict (1.2).
Hence $A-B-1=0$. Then by (3.3)

$$
\bar{N}\left(r, 0 ; F+\frac{1}{B}\right)=\bar{N}(r, \infty ; G) .
$$

Again by Nevanlinna second fundamental theorem

$$
\begin{aligned}
T(r, F) \leq & \bar{N}(r, \infty ; F)+\bar{N}(r, 0 ; F)+\bar{N}\left(r, 0 ; F+\frac{1}{B}\right)+S(r, F) \\
\leq & \bar{N}(r, \infty ; f)+T(r, F)-d T(r, f)+N_{2+p}(r, 0 ; f)+\bar{N}(r, \infty ; g) \\
& +S(r, f)+S(r, g)
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
d T(r, f) \leq \bar{N}(r, \infty ; f)+N_{2+p}(r, 0 ; f)+\bar{N}(r, \infty ; g)+S(r, f)+S(r, g) \tag{3.7}
\end{equation*}
$$

Combining (3.5) and (3.7)

$$
\begin{aligned}
d T(r, f)+d T(r, g) \leq & N_{2+p}(r, 0 ; f)+2 \bar{N}(r, \infty ; f)+N_{2+p}(r, 0 ; g) \\
& +2 \bar{N}(r, \infty ; g)+S(r, f)+S(r, g),
\end{aligned}
$$

which violates our given assumption.
Subcase 2. $B=-1$. Then

$$
G=\frac{A}{A+1-F}
$$

and

$$
F=\frac{(1+A) G-A}{G} .
$$

If $A+1 \neq 0$, then we obtain

$$
\begin{aligned}
& \bar{N}(r, A+1 ; F)=\bar{N}(r, \infty ; G), \\
& \bar{N}\left(r, \frac{A}{A+1} ; G\right)=\bar{N}(r, 0 ; F) .
\end{aligned}
$$

By similar argument, we have a contradiction.
Therefore, $A+1=0$, then

$$
F G=1 \Rightarrow P[f] \cdot P[g] \equiv a^{2} .
$$

Subcase 3. $B=0$. Then (3.3) and (3.4) gives $G=\frac{F+A-1}{A}$ and $F=A G+$ $1-A$.

If $A-1 \neq 0, N(r, 0 ; A-1+F)=N(r, 0 ; G)$ and $N\left(r, \frac{A-1}{A} ; G\right)=N(r, 0 ; F)$. Proceeding similarly as in Subcase 1, we get a contradiction.

Therefore, $A-1=0$, then $F \equiv G$, i.e.,

$$
P[f] \equiv P[g] .
$$

This complete the proof of Case 1.
Case 2: $k=1$. From (ii) of Lemma 2.3

$$
\begin{aligned}
T(r, F) \leq & N_{2}(r, \infty ; F)+N_{2}(r, \infty ; G)+N_{2}(r, 0 ; F)+N_{2}(r, 0 ; G)+\bar{N}_{L}(r, 1 ; F) \\
& +S(r, F)+S(r, G) .
\end{aligned}
$$

Using Lemma 2.2

$$
\begin{aligned}
T(r, F) \leq & 2 \bar{N}(r, \infty ; F)+2 \bar{N}(r, \infty ; G)+T(r, F)-d T(r, f)+N_{2+p}(r, 0 ; f) \\
& +Q \bar{N}(r, \infty ; g)+N_{2+p}(r, 0 ; g)+\bar{N}_{L}(r, 1 ; F)+S(r, F)+S(r, G)
\end{aligned}
$$

So by Lemma 2.2 and Lemma 2.4

$$
\begin{aligned}
d T(r, f) \leq & 2 \bar{N}(r, \infty ; f)+N_{2+p}(r, 0 ; f)+(2+Q) \bar{N}(r, \infty ; g) \\
& +N_{2+p}(r, 0 ; g)+\frac{1}{2} \bar{N}(r, \infty ; f)+\frac{1}{2} Q \bar{N}(r, \infty ; f)+\frac{1}{2} N_{2+p}(r, 0 ; f) \\
& +S(r, f)+S(r, g)
\end{aligned}
$$

$$
\begin{aligned}
\leq & \frac{5+Q}{2} \bar{N}(r, \infty ; f)+\frac{3}{2} N_{2+p}(r, 0 ; f)+(2+Q) \bar{N}(r, \infty ; g) \\
& +N_{2+p}(r, 0 ; g)+S(r, f)+S(r, g)
\end{aligned}
$$

i.e.,

$$
\begin{aligned}
d T(r, f) \leq & \frac{5+Q}{2} \bar{N}(r, \infty ; f)+\frac{3}{2} N_{2+p}(r, 0 ; f)+(2+Q) \bar{N}(r, \infty ; g) \\
& +N_{2+p}(r, 0 ; g)+S(r, f)+S(r, g)
\end{aligned}
$$

Similarly

$$
\begin{aligned}
d T(r, g) \leq & \frac{5+Q}{2} \bar{N}(r, \infty ; g)+\frac{3}{2} N_{2+p}(r, 0 ; g)+(2+Q) \bar{N}(r, \infty ; f) \\
& +N_{2+p}(r, 0 ; f)+S(r, f)+S(r, g)
\end{aligned}
$$

Adding the above two inequalities we get

$$
\begin{aligned}
d T(r, f)+d T(r, g) \leq & \frac{3 Q+9}{2} \bar{N}(r, \infty ; f)+\frac{5}{2} N_{2+p}(r, 0 ; f)+\frac{3 Q+9}{2} \bar{N}(r, \infty ; g) \\
& +\frac{5}{2} N_{2+p}(r, 0 ; g)+S(r, f)+S(r, g)
\end{aligned}
$$

which contradict our hypothesis (1.3).
Proceeding similarly as in Case 1, we get the result for this case.
Case 3: $k=0$. From (iii) of Lemma 2.3

$$
\begin{aligned}
T(r, F) \leq & N_{2}(r, \infty ; F)+N_{2}(r, \infty ; G)+N_{2}(r, 0 ; F)+N_{2}(r, 0 ; G) \\
& +2 \bar{N}_{L}(r, 1 ; F)+\bar{N}_{L}(r, 1 ; G)+S(r, F)+S(r, G)
\end{aligned}
$$

Using Lemmas 2.2 and 2.5

$$
\begin{aligned}
T(r, F) \leq & 2 \bar{N}(r, \infty ; F)+2 \bar{N}(r, \infty ; G)+T(r, F)-d T(r, f)+N_{2+p}(r, 0 ; f) \\
& +Q \bar{N}(r, \infty ; g)+N_{2+p}(r, 0 ; g)+2 \bar{N}(r, \infty ; F)+2 \bar{N}(r, 0 ; F) \\
& +\bar{N}(r, \infty ; G)+\bar{N}(r, 0 ; G)+S(r, F)+S(r, G)
\end{aligned}
$$

i.e.,

$$
\begin{aligned}
d T(r, f) \leq & 4 \bar{N}(r, \infty ; f)+N_{2+p}(r, 0 ; f)+(3+Q) \bar{N}(r, \infty ; g) \\
& +N_{2+p}(r, 0 ; g)+2 Q \bar{N}(r, \infty ; f)+2 N_{2+p}(r, 0 ; f) \\
& +Q \bar{N}(r, \infty ; g)+N_{2+p}(r, 0 ; g)+S(r, f)+S(r, g) \\
\leq & (4+2 Q) \bar{N}(r, \infty ; f)+3 N_{2+p}(r, 0 ; f) \\
& +(3+2 Q) \bar{N}(r, \infty ; g)+2 N_{2+p}(r, 0 ; g)+S(r, f)+S(r, g)
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
d T(r, g) \leq & (4+2 Q) \bar{N}(r, \infty ; g)+3 N_{2+p}(r, 0 ; g) \\
& +(3+2 Q) \bar{N}(r, \infty ; f)+2 N_{2+p}(r, 0 ; f)+S(r, f)+S(r, g)
\end{aligned}
$$

Combining the above two inequalities we get,

$$
\begin{aligned}
d T(r, f)+d T(r, g) \leq & (4 Q+7) \bar{N}(r, \infty ; f)+5 N_{2+p}(r, 0 ; f) \\
& +(4 Q+7) \bar{N}(r, \infty ; g)+5 N_{2+p}(r, 0 ; g) \\
& +S(r, f)+S(r, g)
\end{aligned}
$$

which contradict our hypothesis (1.4).
Approaching similarly as in Case 1, we get the result for this case.

References

[1] W. K. Hayman, Meromorphic Functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964.
[2] I. Lahiri and B. Pal, Uniqueness of meromorphic functions with their homogeneous and linear differential polynomials sharing a small function, Bull. Korean Math. Soc. 54 (2017), no. 3, 825-838.
[3] S. Lin and W. Lin, Uniqueness of meromorphic functions concerning weakly weightedsharing, Kodai Math. J. 29 (2006), no. 2, 269-280.
[4] H.-Y. Xu and Y. Hu, Uniqueness of meromorphic function and its differential polynomial concerning weakly weighted-sharing, Gen. Math. 19 (2011), no. 3, 101-111.
[5] C. C. Yang, On deficiencies of differential polynomials. II, Math. Z. 125 (1972), 107-112.
6] L. Yang, Value Distribution Theory, translated and revised from the 1982 Chinese original, Springer-Verlag, Berlin, 1993.
[7] H. X. Yi and C. C. Yang, Uniqueness theory of meromorphic functions (in Chinese), Science Press, Beijing, 1995.

Dilip Chandra Pramanik
Department of Mathematics
University of North Bengal
Raja Rammohunpur, Darjeeling-734013
West Bengal, India
Email address: dcpramanik.nbu2012@gmail.com
Jayanta Roy
Department of Mathematics
University of North Bengal
Raja Rammohunpur, Darjeeling-734013
West Bengal, India
Email address: jayantaroy983269@yahoo.com

