• Title/Summary/Keyword: homogeneous SNR

Search Result 7, Processing Time 0.021 seconds

Multiuser Heterogeneous-SNR MIMO Systems

  • Jo, Han-Shin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.8
    • /
    • pp.2607-2625
    • /
    • 2014
  • Previous studies on multiuser multiple-input multiple-output (MIMO) mostly assume a homogeneous signal-to-noise ratio (SNR), where each user has the same average SNR. However, real networks are more likely to feature heterogeneous SNRs (a random-valued average SNR). Motivated by this fact, we analyze a multiuser MIMO downlink with a zero-forcing (ZF) receiver in a heterogeneous SNR environment. A transmitter with Mantennas constructs M orthonormal beams and performs the SNR-based proportional fairness (S-PF) scheduling where data are transmitted to users each with the highest ratio of the SNR to the average SNR per beam. We develop a new analytical expression for the sum throughput of the multiuser MIMO system. Furthermore, simply modifying the expression provides the sum throughput for important special cases such as homogeneous SNR, max-rate scheduling, or high SNR. From the analysis, we obtain new insights (lemmas): i) S-PF scheduling maximizes the sum throughput in the homogeneous SNR and ii) under high SNR and a large number of users, S-PF scheduling yields the same multiuser diversity for both heterogeneous SNRs and homogeneous SNRs. Numerical simulation shows the interesting result that the sum throughput is not always proportional to M for a small number of users.

CENTRALLY PEAKED X-RAY SNRS : CLOUD EVAPORATION AND THERMAL CONDUCTION (X-선 중심 가광 초신성 잔해 : 성간운 증발과 열전도 모델)

  • CHOE SEUNG-URN;JUNG HYUN-CHUL;PARK BYEONG-GEON
    • Publications of The Korean Astronomical Society
    • /
    • v.14 no.2
    • /
    • pp.69-78
    • /
    • 1999
  • We present the results of one-dimensional numerical simulations of SNR evolution in the in­homogeneous medium considering the effects of the evaporation of the cloud and the thermal conduction. We have included the effects of changing evaporation rate as a function of cloud size and the ambient temperature so that the clouds could be evaporated completely before they reach the center of the SNR. The heat conduction markedly changes the density distribution in the remnant interior. To explain the observed morphologies of the centrally peaked X-ray SNRs(for example W44), the maximal thermal conduction is required. However, this is unlikely due to the magnetic field and the turbulent motion. The effects of the evaporation of the cloud and the thermal conduction described here may explain the class of remnants observed to have centrally peaked X-ray emmision.

  • PDF

Transmit Receive RF Resonator Optimization at 7 T MRI System (7 T 자기공명영상시스템에서의 송수신 RF 공진기 최적화)

  • Alam, Mohammad Wajih;Yoo, Hyoungsuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.10
    • /
    • pp.1727-1730
    • /
    • 2016
  • Magnetic resonance imaging has a potential to produce clear anatomical as well as functional images of human body. However, the ability to diagnose is limited by signal to noise ratio (SNR) and the resolution of current medical systems. To remove the challenges prevalent due to the use of high field scanners, dedicated radio frequency coils are used. Transverse electromagnetic coils have an advantage of providing homogeneous magnetic field throughout the region but with low signal to noise ratio while surface coils have an advantage of providing higher signal to noise ratio but with low homogeneity. This research combines both the advantage into one by utilizing transmit only transverse electromagnetic radio frequency coils (8 channel) along with receive only surface coils (by varying the number) for better imaging of brain. A 7 Tesla 32-channel close fitting helmet shaped phased-array surface coils along with the combination of 8 channel transmit only transverse electromagnetic coils provided good homogeneity as well as significant SNR improvements throughout the human brain.

Improvement of Fat Suppression and Artifact Reduction Using IDEAL Technique in Head and Neck MRI at 3T

  • Hong, Jin Ho;Lee, Ha Young;Kang, Young Hye;Lim, Myung Kwan;Kim, Yeo Ju;Cho, Soon Gu;Kim, Mi Young
    • Investigative Magnetic Resonance Imaging
    • /
    • v.20 no.1
    • /
    • pp.44-52
    • /
    • 2016
  • Purpose: To quantitatively and qualitatively compare fat-suppressed MRI quality using iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) with that using frequency selective fat-suppression (FSFS) T2- and postcontrast T1-weighted fast spin-echo images of the head and neck at 3T. Materials and Methods: The study was approved by our Institutional Review Board. Prospective MR image analysis was performed in 36 individuals at a single-center. Axial fat suppressed T2- and postcontrast T1-weighted images with IDEAL and FSFS were compared. Visual assessment was performed by two independent readers with respect to; 1) metallic artifacts around oral cavity, 2) susceptibility artifacts around upper airway, paranasal sinus, and head-neck junction, 3) homogeneity of fat suppression, 4) image sharpness, 5) tissue contrast of pathologies and lymph nodes. The signal-to-noise ratios (SNR) for each image sequence were assessed. Results: Both IDEAL fat suppressed T2- and T1-weighted images significantly reduced artifacts around airway, paranasal sinus, and head-neck junction, and significantly improved homogeneous fat suppression in compared to those using FSFS (P < 0.05 for all). IDEAL significantly decreased artifacts around oral cavity on T2-weighted images (P < 0.05, respectively) and improved sharpness, lesion-to-tissue, and lymph node-to-tissue contrast on T1-weighted images (P < 0.05 for all). The mean SNRs were significantly improved on both T1- and T2-weighted IDEAL images (P < 0.05 for all). Conclusion: IDEAL technique improves image quality in the head and neck by reducing artifacts with homogeneous fat suppression, while maintaining a high SNR.

Magnetic Resonance Image Analysis using MESH for High-frequency Shielding (고주파 차폐용 Mesh를 이용한 자기공명영상 분석)

  • Shin, Woon-Jae
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.7
    • /
    • pp.975-982
    • /
    • 2021
  • The purpose of this study is to evaluate the effect on the phantom for magnetic resonance imaging located nearby by partially shielding RF with a mesh made thinner than hair composed of copper, black metal, and polyester using metallic materials of titanium, which are commonly used for esophageal stents and implants in the body. Magnetic resonance images according to field of view (FOV) were analyzed in the Spin Echo T1 weighted images of TR 500 ms, TE 20 ms, NEX 1, and slice thickness 5mm using a Cardiac coil of 3T Achieva X-series. Aliasing artifact did not occur in FOV 304 mm × 304 mm, but it occurred in 250 mm × 250 mm and 170 mm × 170 mm. In FOV 170 mm × 170 mm, when a mesh was not used, the SNR was measured with 78.23, and when separated by standing a mesh in the middle, it was 215.05, and when completely shielded with a mesh, the SNR was 366.44. In addition, when completely shielded with a mesh, the aliasing artifact was also removed, and signal intensities on the left, middle and right of the image were also able to obtain homogeneous images compared to the previous two cases. In conclusion, if RF is partially shielded with a mesh, aliasing artifact can be removed, and magnetic resonance images with excellent image resolution and homogeneity can be obtained using a small FOV.

An exploratory study of stress wave communication in concrete structures

  • Ji, Qing;Ho, Michael;Zheng, Rong;Ding, Zhi;Song, Gangbing
    • Smart Structures and Systems
    • /
    • v.15 no.1
    • /
    • pp.135-150
    • /
    • 2015
  • Large concrete structures are prone to cracks and damages over time from human usage, weathers, and other environmental attacks such as flood, earthquakes, and hurricanes. The health of the concrete structures should be monitored regularly to ensure safety. A reliable method of real time communications can facilitate more frequent structural health monitoring (SHM) updates from hard to reach positions, enabling crack detections of embedded concrete structures as they occur to avoid catastrophic failures. By implementing an unconventional mode of communication that utilizes guided stress waves traveling along the concrete structure itself, we may be able to free structural health monitoring from costly (re-)installation of communication wires. In stress-wave communications, piezoelectric transducers can act as actuators and sensors to send and receive modulated signals carrying concrete status information. The new generation of lead zirconate titanate (PZT) based smart aggregates cause multipath propagation in the homogeneous concrete channel, which presents both an opportunity and a challenge for multiple sensors communication. We propose a time reversal based pulse position modulation (TR-PPM) communication for stress wave communication within the concrete structure to combat multipath channel dispersion. Experimental results demonstrate successful transmission and recovery of TR-PPM using stress waves. Compared with PPM, we can achieve higher data rate and longer link distance via TR-PPM. Furthermore, TR-PPM remains effective under low signal-to-noise (SNR) ratio. This work also lays the foundation for implementing multiple-input multiple-output (MIMO) stress wave communication networks in concrete channels.

Development of $^1H-^{31}P$ Animal RF Coil for pH Measurement Using a Clinical MR Scanner (임상용 MR에서 pH 측정을 위한 동물 실험용 $^1H-^{31}P$ RF 코일 개발)

  • Kim, Eun Ju;Kim, Daehong;Lee, Sangwoo;Heo, Dan;Lee, Young Han;Suh, Jin-Suck
    • Investigative Magnetic Resonance Imaging
    • /
    • v.18 no.1
    • /
    • pp.52-58
    • /
    • 2014
  • Purpose : To establish a pH measurement system for a mouse tumor study using a clinical scanner, to develop the $^1H$ and 31P radio frequency (RF) coil system and to test pH accuracy with phantoms. Materials and Methods: The $^1H$ and the $^{31}P$ surface coils were designed to acquire signals from mouse tumors. Two coils were positioned orthogonally for geometric decoupling. The pH values of various pH phantoms were calculated using the $^1H$ decoupled $^{31}P$ MR spectrum with the Henderson-Hasselbalch equation. The calculated pH value was compared to that of a pH meter. Results: The mutual coil coupling was shown in a standard $S_{12}$. Coil coupling ($S_{12}$) were -73.0 and -62.3 dB respectively. The signal-to-noise ratio (SNR) obtained from the homogeneous phantom $^1H$ image was greater than 300. The high resolution in vivo mice images were acquired using a $^{31}P$-decoupled $^1H$ coil. The pH values calculated from the $^1H$-decoupled $^{31}P$ spectrum correlated well with the values measured by pH meter ($R^2$=0.97). Conclusion: Accurate pH values can be acquired using a $^1H$-decoupled $^{31}P$ RF coil with a clinical scanner. This two-surface coil system could be applied to other nuclear MRS or MRI.