• 제목/요약/키워드: hole formation

검색결과 303건 처리시간 0.031초

Preliminary Works of Contact via Formation of LCD Backplanes Using Silver Printing

  • Yang, Yong Suk;You, In-Kyu;Han, Hyun;Koo, Jae Bon;Lim, Sang Chul;Jung, Soon-Won;Na, Bock Soon;Kim, Hye-Min;Kim, Minseok;Moon, Seok-Hwan
    • ETRI Journal
    • /
    • 제35권4호
    • /
    • pp.571-577
    • /
    • 2013
  • The fabrication of a thin-film transistor backplane and a liquid-crystal display using printing processes can eliminate the need for photolithography and offers the potential to reduce the manufacturing costs. In this study, we prepare contact via structures through a poly(methyl methacrylate) polymer insulator layer using inkjet printing. When droplets of silver ink composed of a polymer solvent are placed onto the polymer insulator and annealed at high temperatures, the silver ink penetrates the interior of the polymer and generates conducting paths between the top and bottom metal lines through the partial dissolution and swelling of the polymer. The electrical property of various contact via-hole interconnections is investigated using a semiconductor characterization system.

Effects of Cd substitution on the superconducting properties of (Pb0.5Cu0.5-xCdx)Sr2(Ca0.7Y0.3)Cu2Oz

  • Lee, Ho Keun;Kim, Jin
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제20권2호
    • /
    • pp.24-28
    • /
    • 2018
  • To understand the effects of Cd substitution for Cu, $(Pb_{0.5}Cu_{0.5-x}Cd_x)Sr_2(Ca_{0.7}Y_{0.3})Cu_2O_z$ (x = 0 ~ 0.5) compounds were synthesized and the structural and superconducting properties of the compounds were characterized. Resistivity data revealed that superconducting transition temperature rises initially up to x = 0.25 and then decreases as the Cd doping content increases. Room-temperature thermoelectric power decreases at first up to x = 0.25 and then increases with higher Cd doping content, indicating that the change in $T_c$ is mainly caused by the change in the hole concentration on the superconducting planes by the Cd doping. The non-monotonic dependence of the lattice parameters and the transition temperature with Cd doping content is discussed in connection with the possible formation of $Pb^{+2}$ ions and the removal of excess oxygen caused by Cd substitution in the charge reservoir layer. A correlation between transition temperature and c/a lattice parameter ratio was observed for the $(Pb_{0.5}Cu_{0.5-x}Cd_x)Sr_2(Ca_{0.7}Y_{0.3})Cu_2O_z$ system.

감광성 BCB를 사용한 다층 MCM-D 기판에서 비아홀 형성에 관한 연구 (Study on Via hole formation in multi layer MCM-D substrate using photosensitive BCB)

  • 주철원;최효상;안용호;정동철;김정훈;한병성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.99-102
    • /
    • 2000
  • Via for achieving reliable fabrication of MCM-D substrate was formed on the photosensitive BCB layer. MCM-D substrate consists of photosensitive BCB(Benzocyclobutene) interlayer dielectric and copper conductors. In order to form the vias in photosensitive BCB layer, the process of BCB and plasme etch using $C_2$F$_{6}$ gas were evaluated. The thickness of BCB after soft bake was shrunk down to 60% of the original. AES analysis was done on two vias, one is etched in $C_2$F$_{6}$ gas and the other is non etched. On via etched in $C_2$F$_{6}$, native C was detected and the amount of native C was reduced after Ar sputter. On via non etched in $C_2$F$_{6}$, organic C was detected and amount of organic C was reduced a little after Ar sputter. As a result of AES, BCB residue was not removed by Ar sputter, so plasma etch is necessary for achieving reliable via.ble via.

  • PDF

피코초 레이저 및 CDE를 이용한 TSV가공기술 (TSV Formation using Pico-second Laser and CDE)

  • 신동식;서정;조용권;이내응
    • 한국레이저가공학회지
    • /
    • 제14권4호
    • /
    • pp.14-20
    • /
    • 2011
  • The advantage of using lasers for through silicon via (TSV) drilling is that they allow higher flexibility during manufacturing because vacuums, lithography, and masks are not required; furthermore, the lasers can be applied to metal and dielectric layers other than silicon. However, conventional nanosecond lasers have disadvantages including that they can cause heat affection around the target area. In contrast, the use of a picosecond laser enables the precise generation of TSVs with a smaller heat affected zone. In this study, a comparison of the thermal and crystallographic defect around laser-drilled holes when using a picosecond laser beam with varing a fluence and repetition rate was conducted. Notably, the higher fluence and repetition rate picosecond laser process increased the experimentally recast layer, surface debris, and dislocation around the hole better than the high fluence and repetition rate. These findings suggest that even the picosecond laser has a heat accumulation effect under high fluence and short pulse interval conditions. To eliminate these defects under the high speed process, the CDE (chemical downstream etching) process was employed and it can prove the possibility to applicate to the TSV industry.

  • PDF

Facile Synthesis and Characterization of GO/ZnS Nanocomposite with Highly Efficient Photocatalytic Activity

  • Li, Lingwei;Xue, Shaolin;Xie, Pei;Feng, Hange;Hou, Xin;Liu, Zhiyuan;Xu, Zhuoting;Zou, Rujia
    • Electronic Materials Letters
    • /
    • 제14권6호
    • /
    • pp.739-748
    • /
    • 2018
  • ZnS nanowalls, microspheres and rice-shaped nanoparticles have been successfully grown on graphene oxide (GO) sheets by the hydrothermal method. The morphologies, structures, chemical compositions and optical properties of the as-synthesized GO/ZnS have been characterized by X-ray power diffraction, energy dispersive spectrometer, scanning electron microscope, Raman spectra, photoluminescence spectroscopy and ultraviolet-visible absorption spectroscopy. It was found that the concentration of CTAB and the reaction temperature were important in the formation of GO/ZnS microstructures. The photocatalytic activity of the as-synthesized GO/ZnS was investigated through the photocatalytic degradation of textile dyeing waste. Results showed that the catalytic activity of the GO/ZnS porous spheres to methyl orange and methylene blue is higher than those of other samples. The degradation rates of methyl orange and methylene blue by porous spheres in 50 min were 97.6 and 97.1%, respectively. This is mainly attributed to the large specific surface area of GO/ZnS porous spheres and high separation efficiency between photogenerated electron and hole pairs.

고성능 TFT 소자 응용을 위한 폴리스티렌 나노입자를 이용한 나노 그물망 제작공정 개발 (Formation of nanonet structure using polystyrene nanoparticle for high-performances TFT applications)

  • 윤길상;이준영;박익수;;백록현;신현진;이정수
    • 반도체디스플레이기술학회지
    • /
    • 제17권3호
    • /
    • pp.36-40
    • /
    • 2018
  • We have developed a nonlithographic patterning technique using polystyrene nanoparticles to form nanonet channel structures which is promising for high-performance TFT applications. Nanoparticles assisted patterning (NAP) is a technique to form uniform nano-patterns by applying lift-off and dry etch process. Oxygen plasma treatment was used to control the diameters of nanonet hole size to realize a branch width down to 100 nm. NAP technology can be very promising to fabricate nanonet structure with advantages of lower manufacturing cost and large-area patterning capability.

Event Horizon Telescope : Earth-sized mm-VLBI array to image supermassive black holes

  • Kim, Jae-Young
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.59.1-59.1
    • /
    • 2019
  • Immediate vicinity of a supermassive black hole (SMBH) is an important place to test general relativity in strong gravity regime. Also, this is a place where mass accretion and jet formation actively occurs at the centers of active galaxies. Theoretical studies predict presence of bright ring-like emission encircling an accreting SMBH with a diameter of about 5 Schwarzschild radii, and a flux depression at the center (i.e., BH shadow). Direct imaging of the BH shadow is accordingly of great importance in modern astrophysics. However, the angular sizes of the horizon-scale structures are desperately small (e.g., ~40-50 microarcseconds (uas) diameter for the nearest best candidates). This poses serious challenges to observe them directly. Event Horizon Telescope (EHT) is a global network of sensitive radio telescopes operating at 230 GHz (1.3 mm), providing ultra-high angular resolution of 20 uas by cutting-edge very long baseline interferometry techniques. With this resolution, EHT aims to directly image the nearest SMBHs; M87 and the galactic center Sgr $A{\ast}$ (~40-50 uas diameters). In Spring 2017, the EHT collaboration conducted a global campaign of EHT and multiwavelength observations of M87 and Sgr $A{\ast}$, with addition of the phased ALMA to the 1.3mm VLBI array. In this talk, I review results from past mm-VLBI and EHT observations, provide updates on the results from the 2017 campaign, and future perspectives.

  • PDF

Properties of High-Redshift Dust-Obscured Galaxies Revealed in the ADF-S

  • Kim, Seongjae;Jeong, Woong-Seob;Park, Daeseong;Kim, Minjin;Hwang, Hoseong;Park, Sung-Joon;Ko, Kyeongyeon;Seo, Hyun Jong
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.62.2-62.2
    • /
    • 2019
  • The ADF-S (AKARI Deep Field - South) toward South Ecliptic Pole is one of the deep survey fields designed for the study of Extragalactic Background Light (EBL). The deep extragalactic survey was initiated by AKARI far-infrared deep observations. Other space missions (e.g., Euclid, NISS, SPHEREx) will perform the deep observations in the ADF-S. Based upon the recent optical survey with KMTNet, we can identify the optical counterparts for dusty star-forming galaxies such as ULIRG, DOG, SMG. Among them, the Dust-Obscured Galaxies (hereafter DOGs with f(24um)/f(R) > 1,000) in the heavily obscured system are expected to play an important role in the formation of most massive galaxies. We have newly discovered ~100 DOGs in ~12 sq. deg. of the ADF-S from our optical survey with KMTNet. We also confirmed that some of DOGs host the most luminous AGN for their black hole masses through the near-infrared spectroscopic follow-ups. Here, we report the properties of high-z hyperluminous DOGs in the ADF-S.

  • PDF

Application of Cu-loaded One-dimensional TiO2 Nanorods for Elevated Photocatalytic Environmental Friendly Hydrogen Production

  • Kim, Dong Jin;Tonda, Surendar;Jo, Wan-Kuen
    • 한국환경과학회지
    • /
    • 제30권1호
    • /
    • pp.57-67
    • /
    • 2021
  • Photocatalytic green energy H2 production utilizing inexhaustible solar energy has been considered as a potential solution to problems of energy scarcity and environmental contamination. However, the design of a cost-effective photocatalyst using simple synthesis methodology is still a grand challenge. Herein, a low-cost transition metal, Cu-loaded one-dimensional TiO2 nanorods (Cu/TNR) were fabricated using an easy-to-use synthesis methodology for significant H2 production under simulated solar light. X-ray photoelectron spectral studies and electron microscopy measurements provide evidence to support the successful formation of the Cu/TNR catalyst under our experimental conditions. UV-vis DRS studies further demonstrate that introducing Cu on the surface of TNR substantially increases light absorption in the visible range. Notably, the Cu/TNR catalyst with optimum Cu content, achieved a remarkable H2 production with a yield of 39,239 µmol/g after 3 h of solar light illumination, representing 7.4- and 27.7-fold enhancements against TNR and commercial P25, respectively. The notably improved H2 evolution activity of the target Cu/TNR catalyst was primarily attributed to its excellent separation and efficiently hampered recombination of photoexcited electron-hole pairs. The Cu/TNR catalyst is, therefore, a potential candidate for photocatalytic green energy applications.

Au/Ag 이중층 전극 구조를 이용한 페로브스카이트 태양전지 (Au/Ag Bilayer Electrode for Perovskite Solar Cells)

  • 이준영;조성진
    • 한국재료학회지
    • /
    • 제32권1호
    • /
    • pp.51-55
    • /
    • 2022
  • Generally, Au electrodes are the preferred top metal electrodes in most perovskite solar cells (PSCs) because of their appropriate work function for hole transportation and their resistance to metal-halide formation. However, for the commercialization of PSCs, the development of alternative metal electrodes for Au is essential to decrease their fabrication cost. Ag electrodes are considered one of the most suitable alternatives for Au electrodes because they are relatively cheaper and can provide the necessary stability for oxidation. However, Ag electrodes require an aging-induced recovery process and react with halides from perovskite layers. Herein, we propose a bilayer Au/Ag electrode to overcome the limitations of single Au and Ag metal electrodes. The performance of PSCs based on bilayer electrodes is comparable to that of PSCs with Au electrodes. Furthermore, by using the bilayer electrode, we can eliminate the aging process, normally an essential process for Ag electrodes. This study not only demonstrates an effective method to substitute for expensive Au electrodes but also provides a possibility to overcome the limitations of Ag electrodes.