Browse > Article
http://dx.doi.org/10.3740/MRSK.2022.32.1.51

Au/Ag Bilayer Electrode for Perovskite Solar Cells  

Lee, Junyeong (School of Energy Engineering, Kyungpook National University)
Jo, Sungjin (School of Energy Engineering, Kyungpook National University)
Publication Information
Korean Journal of Materials Research / v.32, no.1, 2022 , pp. 51-55 More about this Journal
Abstract
Generally, Au electrodes are the preferred top metal electrodes in most perovskite solar cells (PSCs) because of their appropriate work function for hole transportation and their resistance to metal-halide formation. However, for the commercialization of PSCs, the development of alternative metal electrodes for Au is essential to decrease their fabrication cost. Ag electrodes are considered one of the most suitable alternatives for Au electrodes because they are relatively cheaper and can provide the necessary stability for oxidation. However, Ag electrodes require an aging-induced recovery process and react with halides from perovskite layers. Herein, we propose a bilayer Au/Ag electrode to overcome the limitations of single Au and Ag metal electrodes. The performance of PSCs based on bilayer electrodes is comparable to that of PSCs with Au electrodes. Furthermore, by using the bilayer electrode, we can eliminate the aging process, normally an essential process for Ag electrodes. This study not only demonstrates an effective method to substitute for expensive Au electrodes but also provides a possibility to overcome the limitations of Ag electrodes.
Keywords
perovskite solar cell; metal electrode; bilayer top electrode; aging;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza and H. J. Snaith, Science, 342, 341 (2013).   DOI
2 Q. Q. Chu, B. Ding, Q. Qiu, Y. Liu, C. X. Li, C. J. Li, G. J. Yang and B. Fang, J. Mater. Chem. A, 6, 8271 (2018).   DOI
3 J. J. Liang, M. Li, J. Y. Zhu, H. Zong, Y. Zhang, S. M. Jain and Z. K. Wang, Org. Electron., 69, 343 (2019).   DOI
4 C. Besleaga, L. E. Abramiuc, V. Stancu, A. G. Tomulescu, M. Sima, L. Trinca, N. Plugaru, L. Pintilie, G. A. Nemnes, M. Iliescu, H. G. Svavarsson, A. Manolescu and I. Pintilie, J. Phys. Chem. Lett., 7, 5168 (2016).   DOI
5 B. Xu, J. Huang, H. Agren, L. Kloo, A. Hagfeldt and L. Sun, ChemSusChem, 7, 3252 (2014).   DOI
6 M. Yao, X. Jia, Y. Liu, W. Guo, L. Shen and S. Ruan, ACS Appl. Mater. Interfaces, 7, 18866 (2015).   DOI
7 J. Nam, J. H. Kim, C. S. Kim, J.-D. Kwon and S. Jo, ACS Appl. Mater. Interfaces, 12, 12648 (2020).   DOI
8 Y. Kato, L. K. Ono, M. V. Lee, S. Wang, S. R. Raga and Y. Qi, Adv. Mater. Interfaces., 2, 1500195 (2015).   DOI
9 F. Yang, M. A. Kamarudin, D. Hirotani, P. Zhang, G. Kapil, C. H. Ng, T. Ma and S. Hayase, Sol. RRL., 3, 1800275 (2019).   DOI
10 D. G. Lee, M. C. Kim, S. Wang, B. J. Kim, Y. S. Meng and H. S. Jung, ACS Appl. Mater. Interfaces, 11, 48497 (2019).   DOI
11 P. Zhai, T.-S. Su, T.-Y. Hsieh, W.-Y. Wang, L. Ren, J. Guo and T.-C. Wei, Nano Energy, 65, 104036 (2019).   DOI
12 N. G. Park, Mater. Today, 18, 65 (2015).   DOI
13 F. Behrouznejad, S. Shahbazi, N. Taghavinia, H.-P. Wu and E. W.-G. Diau, J. Mater. Chem. A, 4, 13488 (2016).   DOI
14 M. Hadadian, J. H. Smatt and J. P. Correa-Baena, Energy Environ. Sci., 13, 1377 (2020).   DOI
15 C. T. Lin, J. Ngiam, B. Xu, Y. H. Chang, T. Du, T. J. Macdonald, J. R. Durrant and M. A. Mclachlan, J. Mater. Chem. A, 8, 8684 (2020).   DOI
16 H. Min, D. Y. Lee, J. Kim, G. Kim, K. S. Lee, J. Kim, M. J. Paik, Y. K. Kim, K. S. Kim, M. G. Kim, T. J. Shin and S. I. Seok, Nature, 598, 444 (2021).   DOI