DOI QR코드

DOI QR Code

Au/Ag Bilayer Electrode for Perovskite Solar Cells

Au/Ag 이중층 전극 구조를 이용한 페로브스카이트 태양전지

  • Lee, Junyeong (School of Energy Engineering, Kyungpook National University) ;
  • Jo, Sungjin (School of Energy Engineering, Kyungpook National University)
  • 이준영 (경북대학교 에너지공학부) ;
  • 조성진 (경북대학교 에너지공학부)
  • Received : 2021.12.29
  • Accepted : 2022.01.11
  • Published : 2022.01.27

Abstract

Generally, Au electrodes are the preferred top metal electrodes in most perovskite solar cells (PSCs) because of their appropriate work function for hole transportation and their resistance to metal-halide formation. However, for the commercialization of PSCs, the development of alternative metal electrodes for Au is essential to decrease their fabrication cost. Ag electrodes are considered one of the most suitable alternatives for Au electrodes because they are relatively cheaper and can provide the necessary stability for oxidation. However, Ag electrodes require an aging-induced recovery process and react with halides from perovskite layers. Herein, we propose a bilayer Au/Ag electrode to overcome the limitations of single Au and Ag metal electrodes. The performance of PSCs based on bilayer electrodes is comparable to that of PSCs with Au electrodes. Furthermore, by using the bilayer electrode, we can eliminate the aging process, normally an essential process for Ag electrodes. This study not only demonstrates an effective method to substitute for expensive Au electrodes but also provides a possibility to overcome the limitations of Ag electrodes.

Keywords

Acknowledgement

This research was supported by Kyungpook National University Development Project Research Fund, 2018.

References

  1. S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza and H. J. Snaith, Science, 342, 341 (2013). https://doi.org/10.1126/science.1243982
  2. J. Nam, J. H. Kim, C. S. Kim, J.-D. Kwon and S. Jo, ACS Appl. Mater. Interfaces, 12, 12648 (2020). https://doi.org/10.1021/acsami.9b18660
  3. P. Zhai, T.-S. Su, T.-Y. Hsieh, W.-Y. Wang, L. Ren, J. Guo and T.-C. Wei, Nano Energy, 65, 104036 (2019). https://doi.org/10.1016/j.nanoen.2019.104036
  4. H. Min, D. Y. Lee, J. Kim, G. Kim, K. S. Lee, J. Kim, M. J. Paik, Y. K. Kim, K. S. Kim, M. G. Kim, T. J. Shin and S. I. Seok, Nature, 598, 444 (2021). https://doi.org/10.1038/s41586-021-03964-8
  5. N. G. Park, Mater. Today, 18, 65 (2015). https://doi.org/10.1016/j.mattod.2014.07.007
  6. F. Behrouznejad, S. Shahbazi, N. Taghavinia, H.-P. Wu and E. W.-G. Diau, J. Mater. Chem. A, 4, 13488 (2016). https://doi.org/10.1039/C6TA05938D
  7. M. Hadadian, J. H. Smatt and J. P. Correa-Baena, Energy Environ. Sci., 13, 1377 (2020). https://doi.org/10.1039/C9EE04030G
  8. Q. Q. Chu, B. Ding, Q. Qiu, Y. Liu, C. X. Li, C. J. Li, G. J. Yang and B. Fang, J. Mater. Chem. A, 6, 8271 (2018). https://doi.org/10.1039/C7TA10871K
  9. C. T. Lin, J. Ngiam, B. Xu, Y. H. Chang, T. Du, T. J. Macdonald, J. R. Durrant and M. A. Mclachlan, J. Mater. Chem. A, 8, 8684 (2020). https://doi.org/10.1039/d0ta01606c
  10. Y. Kato, L. K. Ono, M. V. Lee, S. Wang, S. R. Raga and Y. Qi, Adv. Mater. Interfaces., 2, 1500195 (2015). https://doi.org/10.1002/admi.201500195
  11. J. J. Liang, M. Li, J. Y. Zhu, H. Zong, Y. Zhang, S. M. Jain and Z. K. Wang, Org. Electron., 69, 343 (2019). https://doi.org/10.1016/j.orgel.2019.03.036
  12. C. Besleaga, L. E. Abramiuc, V. Stancu, A. G. Tomulescu, M. Sima, L. Trinca, N. Plugaru, L. Pintilie, G. A. Nemnes, M. Iliescu, H. G. Svavarsson, A. Manolescu and I. Pintilie, J. Phys. Chem. Lett., 7, 5168 (2016). https://doi.org/10.1021/acs.jpclett.6b02375
  13. D. G. Lee, M. C. Kim, S. Wang, B. J. Kim, Y. S. Meng and H. S. Jung, ACS Appl. Mater. Interfaces, 11, 48497 (2019). https://doi.org/10.1021/acsami.9b14619
  14. F. Yang, M. A. Kamarudin, D. Hirotani, P. Zhang, G. Kapil, C. H. Ng, T. Ma and S. Hayase, Sol. RRL., 3, 1800275 (2019). https://doi.org/10.1002/solr.201800275
  15. B. Xu, J. Huang, H. Agren, L. Kloo, A. Hagfeldt and L. Sun, ChemSusChem, 7, 3252 (2014). https://doi.org/10.1002/cssc.201402678
  16. M. Yao, X. Jia, Y. Liu, W. Guo, L. Shen and S. Ruan, ACS Appl. Mater. Interfaces, 7, 18866 (2015). https://doi.org/10.1021/acsami.5b05747