• Title/Summary/Keyword: hole formation

Search Result 303, Processing Time 0.021 seconds

Study on the Spray Characteristics of a Port Fuel Injector for a Gasoline Engine (가솔린엔진용 포트분사식 인젝터의 분무특성에 관한 연구)

  • Lee, Sang-In;Lee, Sung-Won;Park, Sung-Young
    • Journal of ILASS-Korea
    • /
    • v.15 no.2
    • /
    • pp.61-66
    • /
    • 2010
  • Fuel spray characteristics of the gasoline engine injector has been studied experimentally. To provide fundamental performance data of 4-hole and 12-hole injectors, spray fuel-mass distribution, wall wetting fuel amount and visualization of injectors have been tested and measured with various fuel supply pressure conditions. Spray visualization has been performed to analyze spray formation, spray angle, stream width and penetration length. Test result shows that wall wetting is greatly influenced by the induction air amount and spray atomization. Spray visualization shows that the 12-hole injector has robust performance characteristics with various fuel supply pressure conditions compared with the 4-hole injector. 4-hole injector generates relatively less wall-wetting fuel amount than 12-hole injector does.

Effect of Fuel Nozzle Configuration on the Reduction of NOx Emission in Medium-speed Marine Diesel Engine (연료분사 노즐 형상이 선박용 중형 디젤 엔진의 NOx에 미치는 영향 연구)

  • Yoon, Wook-Hyeon;Kim, Byong-Seok;Ryu, Sung-Hyup;Kim, Ki-Doo;Ha, Ji-Soo
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.13-14
    • /
    • 2005
  • Multi-dimensional combustion analysis and experiment has been carried out to investigate the effects of the injector nozzle hole diameter and number on the NOx formation and fuel consumption in HYUNDAI HiMSEN engine. The behavior of spray and combustion phenomena in diesel engine was examined by FIRE code. Wave breakup and Zeldovich models were adopted to describe the atomization characteristics and NOx formation. Wallfilm model suggested by Mundo, et al. and auto-ignition model suggested by Theobald and Cheng were adopted to investigate the spray-wall interaction characteristics and ignition delay. The information of spray angle and spray tip penetration length was extracted from fuel spray visualization experiment and the fuel injection rate profile was extracted from fuel injection system experiment as an input and verification data for the combustion analysis. Next, the nine different nozzle configurations were simulated to evaluate the effect of injector hole diameter and number on the NOx formation and fuel consumption.

  • PDF

A Review on the Mixture Formation and Atomization Characteristics of Oxygenated Biodiesel Fuel (바이오디젤 연료의 혼합기 형성 및 미립화 증진 방안)

  • Suh, Hyun Kyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.1
    • /
    • pp.183-192
    • /
    • 2014
  • In this work, the mixture formation and atomization characteristics of biodiesel fuel were reviewed under various test conditions for the optimization of compression-ignition engine fueled with biodiesel. To achieve these, the effect of nozzle caviting flow, group-hole nozzle geometry and injection strategies on the injection rate, spray evolution and atomization characteristics of biodiesel were studied by using spray characteristics measuring system. At the same time, the fuel heating system was installed to obtain the effect of fuel temperature on the biodiesel fuel atomization. It was revealed that cavitation in the nozzle orifice promoted the atomization performance of biodiesel. The group-hole nozzle geometry and split injection strategies couldn't improve it, however, the different orifice angles which were diverged and converged angle of a group-hole nozzle enhanced the biodiesel atomization. It was also observed that the increase of fuel temperature induced the quick evaporation of biodiesel fuel droplet.

An Experiment for determining Electrical Conductivity in Modelholes using Continuous Measurement System (공내수 전기전도도의 자동측정시스템 구축을 위한 실험)

  • 김영화;박정빈;임헌태
    • The Journal of Engineering Geology
    • /
    • v.13 no.3
    • /
    • pp.281-292
    • /
    • 2003
  • We setup a continuous measurement system for electrical conductivity of fluid in a model borehole and verified the basic environments in electrical conductivity measurement for estimating hydraulic constants. The experiment was made by monitoring the conductivity change within the hole using NaCI solution of different salinities and incoming formation fluid using distilled water. The experiment was made under the state of constant flow rate by maintaining balance between inflow and outflow. Conductivity variation features were observed by controlling salinity contrasts and temperature differences between fluid within the hole and incoming formation fluid. flow rate and the location of inlet and outlet. The results of the experiment show well the role of each affecting factor on the conductivity distribution. and suggest appropriate environments for conductivity measurements. It is considered that the basis of the conductivity measurement for henceforward laboratory model and/or in-situ borehole experiment has been prepared.

Optical Recording Properties of $(Te_{86}Se_{14})_{50}Bi_{50}$ Thin Films with Trilayer Structure (삼중층 구조를 갖는 $(Te_{86}Se_{14})_{50}Bi_{50}$ 박막의 광기록 특성)

  • Kim, Byeong-Hoon;Lee, Hyun-Yong;Lee, Young-Jong;Chung, Hong-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.164-167
    • /
    • 1988
  • This paper reports optical properties and hole formation of a 488nm-optimumed trilayer structure utiluzed Te-based thin films as a recording layer, and the application of trilayer to 830nm. The optical recording characteristics of metallic recording media are enhanced significantly by incoporating the metal (Al) layer into an antireflection trilayer structure. Due to the interference condition inherent in the design of the trilayer structure, reflectance from holes is ranked a low fraction. the hole formation is carried out by laser by $Ar^+$ laser(488nm). For 20nsec laser pulse duration, the hole opening threshold power of $(Te_{86}Se_{14})_{50}Bi_{50}$ trilayer is lower than that of monolayor that used in this experiments. Hole shapes of the whole sample were clean. For the application of the diode laser, the thickness of dielectric is varied by$\lambda$/4n. In order to compare the monolayer with the trilayer reflectance was measured.

  • PDF

Ripple Formation and Polarization Effects in Femtosecond Laser Drilling (펨토초 레이저에 의한 SUS 가공 특성 및 리플 생성)

  • Son, Ik-Bu;Go, Myeong-Jin;Kim, Yeong-Seop;No, Yeong-Cheol
    • Laser Solutions
    • /
    • v.12 no.1
    • /
    • pp.14-18
    • /
    • 2009
  • Ripple formation of femtosecond laser in stainless steel is investigated using 184 fs pulses with a center wavelength of 785 nm. The effect of the laser polarization relative to the translation direction is observed. For drilling with a certain aspect ratio, reflections at the hole walls take place, leading to a non-uniform intensity distribution deep inside the formed hole. Finally, it is shown that a circular polarization during the drilling process significantly improves the quality of the produced holes.

  • PDF

Hole Defects on Two-Dimensional Materials Formed by Electron Beam Irradiation: Toward Nanopore Devices

  • Park, Hyo Ju;Ryu, Gyeong Hee;Lee, Zonghoon
    • Applied Microscopy
    • /
    • v.45 no.3
    • /
    • pp.107-114
    • /
    • 2015
  • Two-dimensional (2D) materials containing hole defects are a promising substitute for conventional nanopore membranes like silicon nitride. Hole defects on 2D materials, as atomically thin nanopores, have been used in nanopore devices, such as DNA sensor, gas sensor and purifier at lab-scale. For practical applications of 2D materials to nanopore devices, researches on characteristics of hole defects on graphene, hexagonal boron nitride and molybdenum disulfide have been conducted precisely using transmission electron microscope. Here, we summarized formation, features, structural preference and stability of hole defects on 2D materials with atomic-resolution transmission electron microscope images and theoretical calculations, emphasizing the future challenges in controlling the edge structures and stabilization of hole defects. Exploring the properties at the local structure of hole defects through in situ experiments is also the important issue for the fabrication of realistic 2D nanopore devices.

The Analysis of Thermal & Optical Properties in LED Package by the PCB structure and via hole formation (PCB 구조와 via hole 구성에 따른 LED 패키지의 열적 광학적 특성 분석)

  • Lee, Se-Il;Lee, Seung-Min;Yang, Jong-Kyung;Park, Hyung-Jun;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.297-298
    • /
    • 2009
  • 대부분의 반도체 소자의 고장 원인은 85%정도가 열로 인한 것이며, 고출력 LED는 인가된 에너지의 20%정도의 광으로 출력되며 나머지 80%가 열로 전환된다. 본 논문에서는 PMS-50과 KEITHLEY 2430을 이용하여 PCB 구조와 Via hole 구성에 따른 LED 패키지의 열적 광학적 특성을 분석하였다. 0.6mm의 Via hole을 가진 FR4 PCB의 열특성이 가장 우수하였으며, Via hole 0.6mm FR4 PCB의 경우 McPCB에 상응하는 광출력 특성을 보였다.

  • PDF

THE GALAXY-BLACK HOLE CONNECTION IN THE LOCAL UNIVERSE

  • Schawinski, Kevin;Fellow, Einstein
    • Publications of The Korean Astronomical Society
    • /
    • v.25 no.3
    • /
    • pp.77-82
    • /
    • 2010
  • Recent results from large surveys of the local universe show that the galaxy-black hole connection is linked to host morphology at a fundamental level and that there are two fundamentally different modes of black hole growth. The fraction of early-type galaxies with actively growing black holes, and therefore the AGN duty cycle, declines significantly with increasing black hole mass. Late-type galaxies exhibit the opposite trend: the fraction of actively growing black holes increases with black hole mass. Issues of AGN selection bias and prospects for near-future efforts with high redshift data are discussed.

Sequential conversion from line defects to atomic clusters in monolayer WS2

  • Gyeong Hee Ryu;Ren-Jie Chan
    • Applied Microscopy
    • /
    • v.50
    • /
    • pp.27.1-27.6
    • /
    • 2020
  • Transition metal dichalcogenides (TMD), which is composed of a transition metal atom and chalcogen ion atoms, usually form vacancies based on the knock-on threshold of each atom. In particular, when electron beam is irradiated on a monolayer TMD such as MoS2 and WS2, S vacancies are formed preferentially, and they are aligned linearly to constitute line defects. And then, a hole is formed at the point where the successively formed line defects collide, and metal clusters are also formed at the edge of the hole. This study reports a process in which the line defects formed in a monolayer WS2 sheet expends into holes. Here, the process in which the W cluster, which always occurs at the edge of the formed hole, goes through a uniform intermediate phase is explained based on the line defects and the formation behavior of the hole. Further investigation confirms the atomic structure of the intermediate phase using annular dark field scanning transition electron microscopy (ADF-STEM) and image simulation.