DOI QR코드

DOI QR Code

Hole Defects on Two-Dimensional Materials Formed by Electron Beam Irradiation: Toward Nanopore Devices

  • Park, Hyo Ju (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Ryu, Gyeong Hee (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Lee, Zonghoon (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST))
  • Received : 2015.09.04
  • Accepted : 2015.09.10
  • Published : 2015.09.30

Abstract

Two-dimensional (2D) materials containing hole defects are a promising substitute for conventional nanopore membranes like silicon nitride. Hole defects on 2D materials, as atomically thin nanopores, have been used in nanopore devices, such as DNA sensor, gas sensor and purifier at lab-scale. For practical applications of 2D materials to nanopore devices, researches on characteristics of hole defects on graphene, hexagonal boron nitride and molybdenum disulfide have been conducted precisely using transmission electron microscope. Here, we summarized formation, features, structural preference and stability of hole defects on 2D materials with atomic-resolution transmission electron microscope images and theoretical calculations, emphasizing the future challenges in controlling the edge structures and stabilization of hole defects. Exploring the properties at the local structure of hole defects through in situ experiments is also the important issue for the fabrication of realistic 2D nanopore devices.

Keywords

References

  1. Alem N, Erni R, Kisielowski C, Rossell M D, Gannett W, and Zettl A (2009) Atomically thin hexagonal boron nitride probed by ultrahigh-resolution transmission electron microscopy. Phys. Rev. B 80, 155425. https://doi.org/10.1103/PhysRevB.80.155425
  2. Attaccalite C, Bockstedte M, Marini A, Rubio A, and Wirtz L (2011) Coupling of excitons and defect states in boron-nitride nanostructures. Phys. Rev. B 83, 144115. https://doi.org/10.1103/PhysRevB.83.144115
  3. Bai J, Zhong X, Jiang S, Huang Y, and Duan X (2010) Graphene nanomesh. Nat. Nanotechnol. 5, 190-194. https://doi.org/10.1038/nnano.2010.8
  4. Bieri M, Treier M, Cai J, Ait-Mansour K, Ruffieux P, Groning O, Groning P, Kastler M, Rieger R, Feng X, Mullen K, and Fasel R (2009) Porous graphenes: two-dimensional polymer synthesis with atomic precision. Chem. Commun. (45), 6919-6921.
  5. Chen J H, Shi T W, Cai T C, Xu T, Sun L T, Wu X S, and Yu D P (2013) Self healing of defected graphene. Appl. Phys. Lett. 102, 103107. https://doi.org/10.1063/1.4795292
  6. Crespi V H, Chopra N G, Cohen M L, Zettl A, and Louie S G (1996) Anisotropic electron-beam damage and the collapse of carbon nanotubes. Phys. Rev. B 54, 5927-5931. https://doi.org/10.1103/PhysRevB.54.5927
  7. Dan Y, Lu Y, Kybert N J, Luo Z, and Johnson A T (2009) Intrinsic response of graphene vapor sensors. Nano Lett. 9, 1472-1475. https://doi.org/10.1021/nl8033637
  8. Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, and Hone J (2010) Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722-726. https://doi.org/10.1038/nnano.2010.172
  9. Du A, Chen Y, Zhu Z, Amal R, Lu G Q, and Smith S C (2009) Dots versus antidots: computational exploration of structure, magnetism, and half-metallicity in boron-nitride nanostructures. J. Am. Chem. Soc. 131, 17354-17359. https://doi.org/10.1021/ja9071942
  10. Farimani A B, Min K, and Aluru N R (2014) DNA base detection using a single-layer MoS2. Acs Nano 8, 7914-7922. https://doi.org/10.1021/nn5029295
  11. Garaj S, Hubbard W, Reina A, Kong J, Branton D, and Golovchenko J A (2010) Graphene as a subnanometre trans-electrode membrane. Nature 467, 190-193. https://doi.org/10.1038/nature09379
  12. Garaj S, Liu S, Golovchenko J A, and Branton D (2013) Molecule-hugging graphene nanopores. Proc. Natl. Acad. Sci. 110, 12192-12196. https://doi.org/10.1073/pnas.1220012110
  13. Girit C O, Meyer J C, Erni R, Rossell M D, Kisielowski C, Yang L, Park C H, Crommie M F, Cohen M L, Louie S G, and Zettl A (2009) Graphene at the edge: stability and dynamics. Science 323, 1705-1708. https://doi.org/10.1126/science.1166999
  14. He K, Robertson A W, Fan Y, Allen C S, Lin Y C, Suenaga K, Kirkland A I, and Warner J H (2015) Temperature dependence of the reconstruction of zigzag edges in graphene. ACS Nano 9, 4786-4795. https://doi.org/10.1021/acsnano.5b01130
  15. Hong J, Hu Z, Probert M, Li K, Lv D, Yang X, Gu L, Mao N, Feng Q, Xie L, Zhang J, Wu D, Zhang Z, Jin C, Ji W, Zhang X, and Yuan J (2015) Exploring atomic defects in molybdenum disulphide monolayers. Nat. Commun. 6, 6293. https://doi.org/10.1038/ncomms7293
  16. Jin C, Lin F, Suenaga K, and Iijima S (2009) Fabrication of a freestanding boron nitride single layer and its defect assignments. Phys. Rev. Lett. 102, 195505. https://doi.org/10.1103/PhysRevLett.102.195505
  17. Jung J and MacDonald A H (2009) Carrier density and magnetismin graphene zigzag nanoribbons. Phys. Rev. B 79, 235433. https://doi.org/10.1103/PhysRevB.79.235433
  18. Kim G, Jang A R, Jeong H Y, Lee Z, Kang D J, and Shin H S (2013b) Growth of high-crystalline, single-layer hexagonal boron nitride on recyclable platinum foil. Nano Lett. 13, 1834-1839. https://doi.org/10.1021/nl400559s
  19. Kim K, Coh S, Kisielowski C, Crommie M F, Louie S G, Cohen M L, and Zettl A (2013a) Atomically perfect torn graphene edges and their reversible reconstruction. Nat. Commun. 4, 2723.
  20. Kim M, Safron N S, Han E, Arnold M S, and Gopalan P (2010) Fabrication and characterization of large-area, semiconducting nanoperforated graphene materials. Nano Lett. 10, 1125-1131. https://doi.org/10.1021/nl9032318
  21. Kim W Y and Kim K S (2008) Prediction of very large values of magnetoresistance in a graphene nanoribbon device. Nat. Nanotechnol. 3, 408-412. https://doi.org/10.1038/nnano.2008.163
  22. Koenig S P, Wang L, Pellegrino J, and Bunch J S (2012) Selective molecular sieving through porous graphene. Nat. Nanotechnol. 7, 728-732. https://doi.org/10.1038/nnano.2012.162
  23. Komsa H P, Kotakoski J, Kurasch S, Lehtinen O, Kaiser U, and Krasheninnikov A V (2012) Two-dimensional transition metal dichalcogenides under electron irradiation: defect production and doping. Phys. Rev. Lett. 109, 035503. https://doi.org/10.1103/PhysRevLett.109.035503
  24. Koskinen P, Malola S, and Hakkinen H (2008) Self-passivating edge reconstructions of graphene. Phys. Rev. Lett. 101, 115502. https://doi.org/10.1103/PhysRevLett.101.115502
  25. Kotakoski J, Jin C H, Lehtinen O, Suenaga K, and Krasheninnikov A V (2010) Electron knock-on damage in hexagonal boron nitride monolayers. Phys. Rev. B 82, 113404. https://doi.org/10.1103/PhysRevB.82.113404
  26. Lahiri J, Lin Y, Bozkurt P, Oleynik I I, and Batzill M (2010) An extended defect in graphene as a metallic wire. Nat. Nanotechnol. 5, 326-329. https://doi.org/10.1038/nnano.2010.53
  27. Lam D V, Kim S M, Cho Y, Kim J H, Lee H J, Yang J M, and Lee S M (2014) Healing defective CVD-graphene through vapor phase treatment. Nanoscale 6, 5639-5644. https://doi.org/10.1039/c4nr00775a
  28. Lee J, Yang Z, Zhou W, Pennycook S J, Pantelides S T, and Chisholm M F (2014) Stabilization of graphene nanopore. Proc. Natl. Acad. Sci. 111, 7522-7526. https://doi.org/10.1073/pnas.1400767111
  29. Li X S, Cai W W, An J H, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, and Ruoff R S (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312-1314. https://doi.org/10.1126/science.1171245
  30. Liu K, Feng J, Kis A, and Radenovic A (2014) Atomically thin molybdenum disulfide nanopores with high sensitivity for DNA translocation. Acs Nano 8, 2504-2511. https://doi.org/10.1021/nn406102h
  31. Liu S, Lu B, Zhao Q, Li J, Gao T, Chen Y, Zhang Y, Liu Z, Fan Z, Yang F, You L, and Yu D (2013a) Boron nitride nanopores: highly sensitive DNA single-molecule detectors. Adv. Mater. 25, 4549-4554. https://doi.org/10.1002/adma.201301336
  32. Liu S, Zhao Q, Xu J, Yan K, Peng H, Yang F, You L, and Yu D (2012) Fast and controllable fabrication of suspended graphene nanopore devices. Nanotechnology 23, 085301. https://doi.org/10.1088/0957-4484/23/8/085301
  33. Liu X, Xu T, Wu X, Zhang Z, Yu J, Qiu H, Hong J H, Jin C H, Li J X, Wang X R, Sun L T, and Guo W (2013b) Top-down fabrication of sub-nanometre semiconducting nanoribbons derived from molybdenum disulfide sheets. Nat. Commun. 4, 1776. https://doi.org/10.1038/ncomms2803
  34. Magda G Z, Jin X, Hagymasi I, Vancso P, Osvath Z, Nemes-Incze P, Hwang C, Biro L P, and Tapaszto L (2014) Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons. Nature 514, 608-611. https://doi.org/10.1038/nature13831
  35. Merchant C A, Healy K, Wanunu M, Ray V, Peterman N, Bartel J, Fischbein M D, Venta K, Luo Z, Johnson A T, and Drndic M (2010) DNA translocation through graphene nanopores. Nano Lett. 10, 2915-2921. https://doi.org/10.1021/nl101046t
  36. Meyer J C, Chuvilin A, Algara-Siller G, Biskupek J, and Kaiser U (2009) Selective sputtering and atomic resolution imaging of atomically thin boron nitride membranes. Nano Lett. 9, 2683-2689. https://doi.org/10.1021/nl9011497
  37. Nakada K, Fujita M, Dresselhaus G, and Dresselhaus M S (1996) Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys. Rev. B 54, 17954-17961. https://doi.org/10.1103/PhysRevB.54.17954
  38. Pacile D, Meyer J C, Girit C O, and Zettl A (2008) The two-dimensional phase of boron nitride: few-atomic-layer sheets and suspended membranes. Appl. Phys. Lett. 92, 133107. https://doi.org/10.1063/1.2903702
  39. Ramasse Q M, Zan R, Bangert U, Boukhvalov D W, Son Y W, and Novoselov K S (2012) Direct experimental evidence of metalmediated etching of suspended graphene. ACS Nano 6, 4063-4071. https://doi.org/10.1021/nn300452y
  40. Russo C J and Golovchenko J A (2012) Atom-by-atom nucleation and growth of graphene nanopores. Proc. Natl. Acad. Sci. 109, 5953-5957. https://doi.org/10.1073/pnas.1119827109
  41. Ryu G H, Park H J, Ryou J, Park J, Lee J, Kim G, Shin H S, Bielawski C W, Ruoff R S, Hong S, and Lee Z (2015) Atomic-scale dynamics of triangular hole growth in monolayer hexagonal boron nitride under electron irradiation. Nanoscale 7, 10600-10605. https://doi.org/10.1039/C5NR01473E
  42. Sathe C, Zou X, Leburton J P, and Schulten K (2011) Computational investigation of DNA detection using graphene nanopores. ACS Nano 5, 8842-8851. https://doi.org/10.1021/nn202989w
  43. Schneider G F, Kowalczyk S W, Calado V E, Pandraud G, Zandbergen H W, Vandersypen L M, and Dekker C (2010) DNA translocation through graphene nanopores. Nano Lett. 10, 3163-3167. https://doi.org/10.1021/nl102069z
  44. Sint K, Wang B, and Kral P (2008) Selective ion passage through functionalized graphene nanopores. J. Am. Chem. Soc. 130, 16448-16449. https://doi.org/10.1021/ja804409f
  45. Smith B W and Luzzi D E (2001) Electron irradiation effects in single wall carbon nanotubes. J. Appl. Phys. 90, 3509-3515. https://doi.org/10.1063/1.1383020
  46. Son Y W, Cohen M L, and Louie S G (2006) Half-metallic graphene nanoribbons. Nature 444, 347-349. https://doi.org/10.1038/nature05180
  47. Song B, Schneider G F, Xu Q, Pandraud G, Dekker C, and Zandbergen H (2011) Atomic-scale electron-beam sculpting of near-defect-free graphene nanostructures. Nano Lett. 11, 2247-2250. https://doi.org/10.1021/nl200369r
  48. Waduge P, Bilgin I, Larkin J, Henley R Y, Goodfellow K, Graham A C, Bell D C, Vamivakas N, Kar S, and Wanunu M (2015) Direct and scalable deposition of atomically thin low-noise MoS2 membranes on apertures. Acs Nano 9, 7352-7359. https://doi.org/10.1021/acsnano.5b02369
  49. Wells D B, Belkin M, Comer J, and Aksimentiev A (2012) Assessing graphene nanopores for sequencing DNA. Nano Lett. 12, 4117-4123. https://doi.org/10.1021/nl301655d
  50. Wilson J A and Yoffe A D (1969) Transition metal dichalcogenides discussion and interpretation of observed optical, electrical and structural properties. Adv. Phys. 18, 193-335. https://doi.org/10.1080/00018736900101307
  51. Xu Q, Wu M Y, Schneider G F, Houben L, Malladi S K, Dekker C, Yucelen E, Dunin-Borkowski R E, and Zandbergen H W (2013) Controllable atomic scale patterning of freestanding monolayer graphene at elevated temperature. Acs Nano 7, 1566-1572. https://doi.org/10.1021/nn3053582
  52. Yazyev O V and Louie S G (2010) Electronic transport in polycrystalline graphene. Nat. Mater. 9, 806-809. https://doi.org/10.1038/nmat2830
  53. Yin L C, Cheng H M, and Saito R (2010) Triangle defect states of hexagonal boron nitride atomic layer: density functional theory calculations. Phys. Rev. B 81, 153407. https://doi.org/10.1103/PhysRevB.81.153407
  54. Zan R, Ramasse Q M, Bangert U, and Novoselov K S (2012) Graphene reknits its holes. Nano Lett. 12, 3936-3940. https://doi.org/10.1021/nl300985q
  55. Zan R, Ramasse Q M, Jalil R, Georgiou T, Bangert U, and Novoselov K S (2013) Control of radiation damage in MoS2 by graphene encapsulation. ACS Nano 7, 10167-10174. https://doi.org/10.1021/nn4044035
  56. Zhou W, Zou X L, Najmaei S, Liu Z, Shi Y M, Kong J, Lou J, Ajayan P M, Yakobson B I, and Idrobo J C (2013a) Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 13, 2615-2622. https://doi.org/10.1021/nl4007479
  57. Zhou Y, Yang P, Zu H, Gao F, and Zu X (2013b) Electronic structures and magnetic properties of MoS2 nanostructures: atomic defects, nanoholes, nanodots and antidots. Phys. Chem. Chem. Phys. 15, 10385-10394. https://doi.org/10.1039/c3cp50381j

Cited by

  1. Formation, structure, and properties of “welded” h-BN/graphene compounds vol.104, pp.1, 2016, https://doi.org/10.1134/S0021364016130063
  2. Bilayered graphene/h-BN with folded holes as new nanoelectronic materials: modeling of structures and electronic properties vol.6, pp.1, 2016, https://doi.org/10.1038/srep38029
  3. Graphene nanopores toward DNA sequencing: a review of experimental aspects vol.60, pp.6, 2017, https://doi.org/10.1007/s11426-016-9016-5
  4. system vol.7, pp.64, 2017, https://doi.org/10.1039/C7RA06353A
  5. Probing the Atomic Structures of Synthetic Monolayer and Bilayer Hexagonal Boron Nitride Using Electron Microscopy vol.46, pp.4, 2016, https://doi.org/10.9729/AM.2016.46.4.217
  6. Quasi-two-dimensional transition metal dichalcogenides: structure, synthesis, properties and applications vol.188, pp.01, 2018, https://doi.org/10.3367/UFNr.2017.02.038065
  7. Advances in DNA Origami Nanopores: Fabrication, Characterization and Applications vol.36, pp.9, 2018, https://doi.org/10.1002/cjoc.201800173
  8. Size Effect of Defects on the Mechanical Properties of Graphene vol.72, pp.6, 2018, https://doi.org/10.3938/jkps.72.681