Browse > Article
http://dx.doi.org/10.9729/AM.2015.45.3.107

Hole Defects on Two-Dimensional Materials Formed by Electron Beam Irradiation: Toward Nanopore Devices  

Park, Hyo Ju (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST))
Ryu, Gyeong Hee (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST))
Lee, Zonghoon (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST))
Publication Information
Applied Microscopy / v.45, no.3, 2015 , pp. 107-114 More about this Journal
Abstract
Two-dimensional (2D) materials containing hole defects are a promising substitute for conventional nanopore membranes like silicon nitride. Hole defects on 2D materials, as atomically thin nanopores, have been used in nanopore devices, such as DNA sensor, gas sensor and purifier at lab-scale. For practical applications of 2D materials to nanopore devices, researches on characteristics of hole defects on graphene, hexagonal boron nitride and molybdenum disulfide have been conducted precisely using transmission electron microscope. Here, we summarized formation, features, structural preference and stability of hole defects on 2D materials with atomic-resolution transmission electron microscope images and theoretical calculations, emphasizing the future challenges in controlling the edge structures and stabilization of hole defects. Exploring the properties at the local structure of hole defects through in situ experiments is also the important issue for the fabrication of realistic 2D nanopore devices.
Keywords
Two-dimensional materials; Hole defect; Nanopore; Transmission electron microscope; Defect structure;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zhou Y, Yang P, Zu H, Gao F, and Zu X (2013b) Electronic structures and magnetic properties of MoS2 nanostructures: atomic defects, nanoholes, nanodots and antidots. Phys. Chem. Chem. Phys. 15, 10385-10394.   DOI
2 Alem N, Erni R, Kisielowski C, Rossell M D, Gannett W, and Zettl A (2009) Atomically thin hexagonal boron nitride probed by ultrahigh-resolution transmission electron microscopy. Phys. Rev. B 80, 155425.   DOI
3 Attaccalite C, Bockstedte M, Marini A, Rubio A, and Wirtz L (2011) Coupling of excitons and defect states in boron-nitride nanostructures. Phys. Rev. B 83, 144115.   DOI
4 Bai J, Zhong X, Jiang S, Huang Y, and Duan X (2010) Graphene nanomesh. Nat. Nanotechnol. 5, 190-194.   DOI
5 Bieri M, Treier M, Cai J, Ait-Mansour K, Ruffieux P, Groning O, Groning P, Kastler M, Rieger R, Feng X, Mullen K, and Fasel R (2009) Porous graphenes: two-dimensional polymer synthesis with atomic precision. Chem. Commun. (45), 6919-6921.
6 Chen J H, Shi T W, Cai T C, Xu T, Sun L T, Wu X S, and Yu D P (2013) Self healing of defected graphene. Appl. Phys. Lett. 102, 103107.   DOI
7 Crespi V H, Chopra N G, Cohen M L, Zettl A, and Louie S G (1996) Anisotropic electron-beam damage and the collapse of carbon nanotubes. Phys. Rev. B 54, 5927-5931.   DOI
8 Dan Y, Lu Y, Kybert N J, Luo Z, and Johnson A T (2009) Intrinsic response of graphene vapor sensors. Nano Lett. 9, 1472-1475.   DOI
9 Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, and Hone J (2010) Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722-726.   DOI
10 Du A, Chen Y, Zhu Z, Amal R, Lu G Q, and Smith S C (2009) Dots versus antidots: computational exploration of structure, magnetism, and half-metallicity in boron-nitride nanostructures. J. Am. Chem. Soc. 131, 17354-17359.   DOI
11 Farimani A B, Min K, and Aluru N R (2014) DNA base detection using a single-layer MoS2. Acs Nano 8, 7914-7922.   DOI
12 Garaj S, Hubbard W, Reina A, Kong J, Branton D, and Golovchenko J A (2010) Graphene as a subnanometre trans-electrode membrane. Nature 467, 190-193.   DOI
13 Garaj S, Liu S, Golovchenko J A, and Branton D (2013) Molecule-hugging graphene nanopores. Proc. Natl. Acad. Sci. 110, 12192-12196.   DOI
14 Jin C, Lin F, Suenaga K, and Iijima S (2009) Fabrication of a freestanding boron nitride single layer and its defect assignments. Phys. Rev. Lett. 102, 195505.   DOI
15 Girit C O, Meyer J C, Erni R, Rossell M D, Kisielowski C, Yang L, Park C H, Crommie M F, Cohen M L, Louie S G, and Zettl A (2009) Graphene at the edge: stability and dynamics. Science 323, 1705-1708.   DOI
16 He K, Robertson A W, Fan Y, Allen C S, Lin Y C, Suenaga K, Kirkland A I, and Warner J H (2015) Temperature dependence of the reconstruction of zigzag edges in graphene. ACS Nano 9, 4786-4795.   DOI
17 Hong J, Hu Z, Probert M, Li K, Lv D, Yang X, Gu L, Mao N, Feng Q, Xie L, Zhang J, Wu D, Zhang Z, Jin C, Ji W, Zhang X, and Yuan J (2015) Exploring atomic defects in molybdenum disulphide monolayers. Nat. Commun. 6, 6293.   DOI
18 Jung J and MacDonald A H (2009) Carrier density and magnetismin graphene zigzag nanoribbons. Phys. Rev. B 79, 235433.   DOI
19 Kim G, Jang A R, Jeong H Y, Lee Z, Kang D J, and Shin H S (2013b) Growth of high-crystalline, single-layer hexagonal boron nitride on recyclable platinum foil. Nano Lett. 13, 1834-1839.   DOI
20 Kim K, Coh S, Kisielowski C, Crommie M F, Louie S G, Cohen M L, and Zettl A (2013a) Atomically perfect torn graphene edges and their reversible reconstruction. Nat. Commun. 4, 2723.
21 Kim M, Safron N S, Han E, Arnold M S, and Gopalan P (2010) Fabrication and characterization of large-area, semiconducting nanoperforated graphene materials. Nano Lett. 10, 1125-1131.   DOI
22 Kim W Y and Kim K S (2008) Prediction of very large values of magnetoresistance in a graphene nanoribbon device. Nat. Nanotechnol. 3, 408-412.   DOI
23 Kotakoski J, Jin C H, Lehtinen O, Suenaga K, and Krasheninnikov A V (2010) Electron knock-on damage in hexagonal boron nitride monolayers. Phys. Rev. B 82, 113404.   DOI
24 Koenig S P, Wang L, Pellegrino J, and Bunch J S (2012) Selective molecular sieving through porous graphene. Nat. Nanotechnol. 7, 728-732.   DOI
25 Komsa H P, Kotakoski J, Kurasch S, Lehtinen O, Kaiser U, and Krasheninnikov A V (2012) Two-dimensional transition metal dichalcogenides under electron irradiation: defect production and doping. Phys. Rev. Lett. 109, 035503.   DOI
26 Koskinen P, Malola S, and Hakkinen H (2008) Self-passivating edge reconstructions of graphene. Phys. Rev. Lett. 101, 115502.   DOI
27 Lahiri J, Lin Y, Bozkurt P, Oleynik I I, and Batzill M (2010) An extended defect in graphene as a metallic wire. Nat. Nanotechnol. 5, 326-329.   DOI
28 Lam D V, Kim S M, Cho Y, Kim J H, Lee H J, Yang J M, and Lee S M (2014) Healing defective CVD-graphene through vapor phase treatment. Nanoscale 6, 5639-5644.   DOI
29 Lee J, Yang Z, Zhou W, Pennycook S J, Pantelides S T, and Chisholm M F (2014) Stabilization of graphene nanopore. Proc. Natl. Acad. Sci. 111, 7522-7526.   DOI
30 Li X S, Cai W W, An J H, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, and Ruoff R S (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312-1314.   DOI
31 Liu K, Feng J, Kis A, and Radenovic A (2014) Atomically thin molybdenum disulfide nanopores with high sensitivity for DNA translocation. Acs Nano 8, 2504-2511.   DOI
32 Magda G Z, Jin X, Hagymasi I, Vancso P, Osvath Z, Nemes-Incze P, Hwang C, Biro L P, and Tapaszto L (2014) Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons. Nature 514, 608-611.   DOI
33 Liu S, Lu B, Zhao Q, Li J, Gao T, Chen Y, Zhang Y, Liu Z, Fan Z, Yang F, You L, and Yu D (2013a) Boron nitride nanopores: highly sensitive DNA single-molecule detectors. Adv. Mater. 25, 4549-4554.   DOI
34 Liu S, Zhao Q, Xu J, Yan K, Peng H, Yang F, You L, and Yu D (2012) Fast and controllable fabrication of suspended graphene nanopore devices. Nanotechnology 23, 085301.   DOI
35 Liu X, Xu T, Wu X, Zhang Z, Yu J, Qiu H, Hong J H, Jin C H, Li J X, Wang X R, Sun L T, and Guo W (2013b) Top-down fabrication of sub-nanometre semiconducting nanoribbons derived from molybdenum disulfide sheets. Nat. Commun. 4, 1776.   DOI
36 Merchant C A, Healy K, Wanunu M, Ray V, Peterman N, Bartel J, Fischbein M D, Venta K, Luo Z, Johnson A T, and Drndic M (2010) DNA translocation through graphene nanopores. Nano Lett. 10, 2915-2921.   DOI
37 Meyer J C, Chuvilin A, Algara-Siller G, Biskupek J, and Kaiser U (2009) Selective sputtering and atomic resolution imaging of atomically thin boron nitride membranes. Nano Lett. 9, 2683-2689.   DOI
38 Nakada K, Fujita M, Dresselhaus G, and Dresselhaus M S (1996) Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys. Rev. B 54, 17954-17961.   DOI
39 Pacile D, Meyer J C, Girit C O, and Zettl A (2008) The two-dimensional phase of boron nitride: few-atomic-layer sheets and suspended membranes. Appl. Phys. Lett. 92, 133107.   DOI
40 Ramasse Q M, Zan R, Bangert U, Boukhvalov D W, Son Y W, and Novoselov K S (2012) Direct experimental evidence of metalmediated etching of suspended graphene. ACS Nano 6, 4063-4071.   DOI
41 Russo C J and Golovchenko J A (2012) Atom-by-atom nucleation and growth of graphene nanopores. Proc. Natl. Acad. Sci. 109, 5953-5957.   DOI
42 Ryu G H, Park H J, Ryou J, Park J, Lee J, Kim G, Shin H S, Bielawski C W, Ruoff R S, Hong S, and Lee Z (2015) Atomic-scale dynamics of triangular hole growth in monolayer hexagonal boron nitride under electron irradiation. Nanoscale 7, 10600-10605.   DOI
43 Sathe C, Zou X, Leburton J P, and Schulten K (2011) Computational investigation of DNA detection using graphene nanopores. ACS Nano 5, 8842-8851.   DOI
44 Schneider G F, Kowalczyk S W, Calado V E, Pandraud G, Zandbergen H W, Vandersypen L M, and Dekker C (2010) DNA translocation through graphene nanopores. Nano Lett. 10, 3163-3167.   DOI
45 Sint K, Wang B, and Kral P (2008) Selective ion passage through functionalized graphene nanopores. J. Am. Chem. Soc. 130, 16448-16449.   DOI
46 Smith B W and Luzzi D E (2001) Electron irradiation effects in single wall carbon nanotubes. J. Appl. Phys. 90, 3509-3515.   DOI
47 Son Y W, Cohen M L, and Louie S G (2006) Half-metallic graphene nanoribbons. Nature 444, 347-349.   DOI
48 Song B, Schneider G F, Xu Q, Pandraud G, Dekker C, and Zandbergen H (2011) Atomic-scale electron-beam sculpting of near-defect-free graphene nanostructures. Nano Lett. 11, 2247-2250.   DOI
49 Wells D B, Belkin M, Comer J, and Aksimentiev A (2012) Assessing graphene nanopores for sequencing DNA. Nano Lett. 12, 4117-4123.   DOI
50 Waduge P, Bilgin I, Larkin J, Henley R Y, Goodfellow K, Graham A C, Bell D C, Vamivakas N, Kar S, and Wanunu M (2015) Direct and scalable deposition of atomically thin low-noise MoS2 membranes on apertures. Acs Nano 9, 7352-7359.   DOI
51 Wilson J A and Yoffe A D (1969) Transition metal dichalcogenides discussion and interpretation of observed optical, electrical and structural properties. Adv. Phys. 18, 193-335.   DOI
52 Xu Q, Wu M Y, Schneider G F, Houben L, Malladi S K, Dekker C, Yucelen E, Dunin-Borkowski R E, and Zandbergen H W (2013) Controllable atomic scale patterning of freestanding monolayer graphene at elevated temperature. Acs Nano 7, 1566-1572.   DOI
53 Yazyev O V and Louie S G (2010) Electronic transport in polycrystalline graphene. Nat. Mater. 9, 806-809.   DOI
54 Yin L C, Cheng H M, and Saito R (2010) Triangle defect states of hexagonal boron nitride atomic layer: density functional theory calculations. Phys. Rev. B 81, 153407.   DOI
55 Zan R, Ramasse Q M, Bangert U, and Novoselov K S (2012) Graphene reknits its holes. Nano Lett. 12, 3936-3940.   DOI
56 Zan R, Ramasse Q M, Jalil R, Georgiou T, Bangert U, and Novoselov K S (2013) Control of radiation damage in MoS2 by graphene encapsulation. ACS Nano 7, 10167-10174.   DOI
57 Zhou W, Zou X L, Najmaei S, Liu Z, Shi Y M, Kong J, Lou J, Ajayan P M, Yakobson B I, and Idrobo J C (2013a) Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 13, 2615-2622.   DOI