• Title/Summary/Keyword: histone lysine methyltransferase

Search Result 19, Processing Time 0.021 seconds

A Novel Histone Methyltransferase, Kodo7 Induces Histone H3-K9 Methylation and Mediates Apoptotic Cell Death

  • Kim, Sung-Mi;Seo, Sang-Beom
    • International Journal of Oral Biology
    • /
    • v.31 no.3
    • /
    • pp.81-86
    • /
    • 2006
  • SET (Suppressor of variegation, Enhancer of zeste, and the Trithorax) domain-containing proteins are known to have methyltransferase activity at lysine residues of histone proteins. In this study, we identified a novel SET domain-containing protein from mouse and named Kodo7. Indeed, Kodo7 has methyltransferase activity at K9 residue of the H3 protein as demonstrated by a histone methyl-transferse activity assay using GST-tagged Kodo7. Confocal microscopy showed that Kodo7 is co-localized with histones in the nucleus. Interestingly, ectopic expression of Kodo7 by transient transfection induced cell death and treatment of the transfectants with a caspase-3 inhibitor, Ac-DEVD-AFC decreased Kodo7-induced apoptosis. These results suggest that Kodo7 induces apoptotic cell death through increased methylation of histones leading to transcriptional repression.

Histone Lysine Methylation (히스톤 라이신 메틸화)

  • Kwak, Sahng-June
    • Journal of Life Science
    • /
    • v.17 no.3 s.83
    • /
    • pp.444-453
    • /
    • 2007
  • Our genome exists in the form of chromatin, and its structural organization should be precisely regulated with an appropriate dynamic nature for life. The basic unit of chromatin is a nucleosome, which consists of a histone octamer. These nucleosomal histones are subject to various covalent modifications, one of which is methylation on certain lysine residues. Recent studies in histone biology identified many histone Iysine methyltransferases (HKMTs) responsible for respective lysine residues and uncovered various kinds of involved chromatin associating proteins and many related epigenetic phenotypes. With the aid of highly precise experimental tools, multi-disciplinary approaches have widened our understanding of how lysine methylation functions in diverse epigenetic processes though detailed mechanisms remain elusive. Still being considered as a relatively more stable mark than other modifications, the recent discovery of lysine demethylases will confer more flexibility on epigenetic memory transmitted through histone lysine methylation. In this review, advances that have been recently observed in epigenetic phenotypes related with histone lysine methylation and the enzymes for depositing and removing the methyl mark are provided.

Identification of histone methyltransferase RE-IIBP target genes in leukemia cell line

  • Son, Hye-Ju;Kim, Ji-Young;Rhee, Sang-Myung;Seo, Sang-Beom
    • Animal cells and systems
    • /
    • v.16 no.4
    • /
    • pp.289-294
    • /
    • 2012
  • Histone methylation has diverse functions including transcriptional regulation via its lysine or arginine residue methylation. Studies indicate that deregulation of histone methylation is linked to human cancers including leukemia. Histone H3K27 methyltrnasferase response element II binding protein (RE-IIBP), as a transcriptional repressor to target gene IL-5, interacts with HDAC and is over-expressed in leukemia patient samples. In this study, we have identified that hematopoiesis-related genes GATA1 and HOXA9 are down-regulated by RE-IIBP in K562 and 293T cells. Transient reporter analysis revealed that GATA1 transcription was repressed by RE-IIBP. On the other hand, HOXA9 and PBX-related homeobox gene MEIS1 was up-regulated by RE-IIBP. These results suggest that RE-IIBP might have a role in hematopoiesis or leukemogenesis by regulating the transcription of target genes, possibly via its H3K27 methyltransferase activity.

Histone H3 Lysine Methylation in Adipogenesis (Adipogenesis에서 히스톤 H3 lysine methylation)

  • Jang, Younghoon
    • Journal of Life Science
    • /
    • v.30 no.8
    • /
    • pp.713-721
    • /
    • 2020
  • Adipogenesis as a model system is needed to understand the molecular mechanisms of human adipocyte biology and the pathogenesis of obesity, diabetes, and other metabolic syndromes. Many relevant studies have been conducted with a focus on gene expression regulation and intracellular signaling relating to Peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein alpha (C/EBPα), which are master adipogenic transcription factors. However, epigenome regulation of adipogenesis by epigenomic modifiers or histone mutations is not fully understood. Histone methylation is one of the major epigenetic modifications on gene expression in mammals, and histone H3 lysine methylation (H3Kme) in particular implicates cell differentiation during various tissue and organ development. During adipogenesis, cell type-specific enhancers are marked by histone H3K4me1 with the active enhancer mark H3K27ac. Mixed-lineage leukemia 4 (MLL4) is a major H3K4 mono-methyltransferase on the adipogenic enhancers of PPARγ and C/EBPα loci. Thus, MLL4 is an important epigenomic modifier for adipogenesis. The repressive mark H3K27me3 is mediated by the enzymatic subunit Enhancer zeste homolog 2 (EZH2) of the polycomb repressive complex 2. EZH2-mediated H3K27 tri-methylation on the Wnt gene increases adipogenesis because WNT signaling is a negative regulator of adipogenesis. This review summarizes current knowledge about the epigenomic regulation of adipogenesis by histone H3 lysine methylation which fundamentally regulates gene expression.

Epigenetic Silencing of CHOP Expression by the Histone Methyltransferase EHMT1 Regulates Apoptosis in Colorectal Cancer Cells

  • Kim, Kwangho;Ryu, Tae Young;Lee, Jinkwon;Son, Mi-Young;Kim, Dae-Soo;Kim, Sang Kyum;Cho, Hyun-Soo
    • Molecules and Cells
    • /
    • v.45 no.9
    • /
    • pp.622-630
    • /
    • 2022
  • Colorectal cancer (CRC) has a high mortality rate among cancers worldwide. To reduce this mortality rate, chemotherapy (5-fluorouracil, oxaliplatin, and irinotecan) or targeted therapy (bevacizumab, cetuximab, and panitumumab) has been used to treat CRC. However, due to various side effects and poor responses to CRC treatment, novel therapeutic targets for drug development are needed. In this study, we identified the overexpression of EHMT1 in CRC using RNA sequencing (RNA-seq) data derived from TCGA, and we observed that knocking down EHMT1 expression suppressed cell growth by inducing cell apoptosis in CRC cell lines. In Gene Ontology (GO) term analysis using RNA-seq data, apoptosis-related terms were enriched after EHMT1 knockdown. Moreover, we identified the CHOP gene as a direct target of EHMT1 using a ChIP (chromatin immunoprecipitation) assay with an anti-histone 3 lysine 9 dimethylation (H3K9me2) antibody. Finally, after cotransfection with siEHMT1 and siCHOP, we again confirmed that CHOP-mediated cell apoptosis was induced by EHMT1 knockdown. Our findings reveal that EHMT1 plays a key role in regulating CRC cell apoptosis, suggesting that EHMT1 may be a therapeutic target for the development of cancer inhibitors.

Genome-wide identification of histone lysine methyltransferases and their implications in the epigenetic regulation of eggshell formation-related genes in a trematode parasite Clonorchis sinensis

  • Min-Ji Park;Woon-Mok Sohn;Young-An Bae
    • Parasites, Hosts and Diseases
    • /
    • v.62 no.1
    • /
    • pp.98-116
    • /
    • 2024
  • Epigenetic writers including DNA and histone lysine methyltransferases (DNMT and HKMT, respectively) play an initiative role in the differentiation and development of eukaryotic organisms through the spatiotemporal regulation of functional gene expressions. However, the epigenetic mechanisms have long been suspected in helminth parasites lacking the major DNA methyltransferases DNMT1 and DNMT3a/3b. Very little information on the evolutionary status of the epigenetic tools and their role in regulating chromosomal genes is currently available in the parasitic trematodes. We previously suggested the probable role of a DNMT2-like protein (CsDNMT2) as a genuine epigenetic writer in a trematode parasite Clonorchis sinensis. Here, we analyzed the phylogeny of HKMT subfamily members in the liver fluke and other platyhelminth species. The platyhelminth genomes examined conserved genes for the most of SET domain-containing HKMT and Disruptor of Telomeric Silencing 1 subfamilies, while some genes were expanded specifically in certain platyhelminth genomes. Related to the high gene dosages for HKMT activities covering differential but somewhat overlapping substrate specificities, variously methylated histones were recognized throughout the tissues/organs of C. sinensis adults. The temporal expressions of genes involved in eggshell formation were gradually decreased to their lowest levels proportionally to aging, whereas those of some epigenetic tool genes were re-boosted in the later adult stages of the parasite. Furthermore, these expression levels were significantly affected by treatment with DNMT and HKMT inhibitors. Our data strongly suggest that methylated histones are potent epigenetic markers that modulate the spatiotemporal expressions of C. sinensis genes, especially those involved in sexual reproduction.

Proper Activity of Histone H3 Lysine 4 (H3K4) Methyltransferase Is Required for Morphogenesis during Zebrafish Cardiogenesis

  • Kim, Jun-Dae;Kim, Eunmi;Koun, Soonil;Ham, Hyung-Jin;Rhee, Myungchull;Kim, Myoung-Jin;Huh, Tae-Lin
    • Molecules and Cells
    • /
    • v.38 no.6
    • /
    • pp.580-586
    • /
    • 2015
  • While increasing evidence indicates the important function of histone methylation during development, how this process influences cardiac development in vertebrates has not been explored. Here, we elucidate the functions of two histone H3 lysine 4 (H3K4) methylation enzymes, SMYD3 and SETD7, during zebrafish heart morphogenesis using gene expression profiling by whole mount in situ hybridization and antisense morpholino oligonucleotide (MO)-based gene knockdown. We find both smyd3 and setd7 are highly expressed within developing zebrafish heart and knock-down of these genes led to severe defects in cardiac morphogenesis without altering the expressions pattern of heart markers, including cmlc2, vmhc, and amhc. Furthermore, double knock-down by coinjection of smyd3 and setd7 MOs caused the synergistic defects in heart development. As similar to knock-down effect, overexpression of these genes also caused the heart morphogenesis defect in zebrafish. These results indicate that histone modifying enzymes, SMYD3 and SETD7, appear to function synergistically during heart development and their proper functioning is essential for normal heart morphogenesis during development.

Positive Charge of Arginine Residues on Histone H4 Tail Is Required for Maintenance of Mating Type in Saccharomyces cerevisiae

  • Yeom, Soojin;Oh, Junsoo;Lee, Eun-Jin;Lee, Jung-Shin
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.9
    • /
    • pp.1573-1579
    • /
    • 2018
  • Transcriptional gene silencing is regulated by the chromatin structure, which is by various factors including histones. Saccharomyces cerevisiae contains transcriptionally silenced regions such as telomeric regions and hidden mating (HM) loci. The positively-charged amino acids on the histone H4 tail were reported to be critical for the telomeric silencing in yeast, by interacting with Dot1, a specific methyltransferase for the $79^{th}$ lysine on histone H3. However, Dot1 did not affect gene silencing within HM loci, but whether the positively-charged amino acids on the H4 tail affect HM silencing has not been defined. To elucidate the function of the H4 tail on HM silencing, we created several MATa-type yeast strains bearing the substitution of arginine with alanine or lysine on the histone H4 tail and checked the sensitivity of MATa-type yeast to alpha pheromone. The arginine point mutants substituted by alanine (R17A, R19A, and R23A) did not show sensitivity to alpha pheromone, but only two arginine mutants substituted by lysine (R17K and R19K) restored the sensitivity to alpha pheromone-like wild type. These data suggested that the basic property of arginine at $17^{th}$ and $19^{th}$ positions in the histone H4 tail is critical for maintaining HM silencing, but that of the $23^{rd}$ arginine is not. Our data implicated that the positive charge of two arginine residues on the histone H4 tail is required for HM silencing in a manner independent of Dot1.

Euchromatin histone methyltransferase II (EHMT2) regulates the expression of ras-related GTP binding C (RRAGC) protein

  • Hwang, Supyong;Kim, Soyoung;Kim, Kyungkon;Yeom, Jeonghun;Park, Sojung;Kim, Inki
    • BMB Reports
    • /
    • v.53 no.11
    • /
    • pp.576-581
    • /
    • 2020
  • Dimethylation of the histone H3 protein at lysine residue 9 (H3K9) is mediated by euchromatin histone methyltransferase II (EHMT2) and results in transcriptional repression of target genes. Recently, chemical inhibition of EHMT2 was shown to induce various physiological outcomes, including endoplasmic reticulum stress-associated genes transcription in cancer cells. To identify genes that are transcriptionally repressed by EHMT2 during apoptosis, and cell stress responses, we screened genes that are upregulated by BIX-01294, a chemical inhibitor of EHMT2. RNA sequencing analyses revealed 77 genes that were upregulated by BIX-01294 in all four hepatic cell carcinoma (HCC) cell lines. These included genes that have been implicated in apoptosis, the unfolded protein response (UPR), and others. Among these genes, the one encoding the stress-response protein Ras-related GTPase C (RRAGC) was upregulated in all BIX-01294-treated HCC cell lines. We confirmed the regulatory roles of EHMT2 in RRAGC expression in HCC cell lines using proteomic analyses, chromatin immune precipitation (ChIP) assay, and small guide RNA-mediated loss-of-function experiments. Upregulation of RRAGC was limited by the reactive oxygen species (ROS) scavenger N-acetyl cysteine (NAC), suggesting that ROS are involved in EHMT2-mediated transcriptional regulation of stress-response genes in HCC cells. Finally, combined treatment of cells with BIX-01294 and 5-Aza-cytidine induced greater upregulation of RRAGC protein expression. These findings suggest that EHMT2 suppresses expression of the RRAGC gene in a ROS-dependent manner and imply that EHMT2 is a key regulator of stress-responsive gene expression in liver cancer cells.

Oxidative stress-induced aberrant G9a activation disturbs RE-1-containing neuron-specific genes expression, leading to degeneration in human SH-SY5Y neuroblastoma cells

  • Kim, Ho-Tae;Ohn, Takbum;Jeong, Sin-Gu;Song, Anji;Jang, Chul Ho;Cho, Gwang-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.1
    • /
    • pp.51-58
    • /
    • 2021
  • Oxidative stress-induced neurodegeneration is one of several etiologies underlying neurodegenerative disease. In the present study, we investigated the functional role of histone methyltransferase G9a in oxidative stress-induced degeneration in human SH-SY5Y neuroblastoma cells. Cell viability significantly decreased on H2O2 treatment; however, treatment with the G9a inhibitor BIX01294 partially attenuated this effect. The expression of neuron-specific genes also decreased in H2O2-treated cells; however, it recovered on G9a inhibition. H2O2-treated cells showed high levels of H3K9me2 (histone H3 demethylated at the lysine 9 residue), which is produced by G9a activation; BIX01294 treatment reduced aberrant activation of G9a. H3K9me2 occupancy of the RE-1 site in neuron-specific genes was significantly increased in H2O2-treated cells, whereas it was decreased in BIX01294-treated cells. The differentiation of H2O2-treated cells also recovered on G9a inhibition by BIX01294. Consistent results were observed when used another G9a inhibitor UCN0321. These results demonstrate that oxidative stress induces aberrant activation of G9a, which disturbs the expression of neuron-specific genes and progressively mediates neuronal cell death. Moreover, a G9a inhibitor can lessen aberrant G9a activity and prevent neuronal damage. G9a inhibition may therefore contribute to the prevention of oxidative stress-induced neurodegeneration.