DOI QR코드

DOI QR Code

Epigenetic Silencing of CHOP Expression by the Histone Methyltransferase EHMT1 Regulates Apoptosis in Colorectal Cancer Cells

  • Kim, Kwangho (Korea Research Institute of Bioscience and Biotechnology) ;
  • Ryu, Tae Young (Korea Research Institute of Bioscience and Biotechnology) ;
  • Lee, Jinkwon (Korea Research Institute of Bioscience and Biotechnology) ;
  • Son, Mi-Young (Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Dae-Soo (Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Sang Kyum (College of Pharmacy, Chungnam National University) ;
  • Cho, Hyun-Soo (Korea Research Institute of Bioscience and Biotechnology)
  • Received : 2022.01.21
  • Accepted : 2022.04.26
  • Published : 2022.09.30

Abstract

Colorectal cancer (CRC) has a high mortality rate among cancers worldwide. To reduce this mortality rate, chemotherapy (5-fluorouracil, oxaliplatin, and irinotecan) or targeted therapy (bevacizumab, cetuximab, and panitumumab) has been used to treat CRC. However, due to various side effects and poor responses to CRC treatment, novel therapeutic targets for drug development are needed. In this study, we identified the overexpression of EHMT1 in CRC using RNA sequencing (RNA-seq) data derived from TCGA, and we observed that knocking down EHMT1 expression suppressed cell growth by inducing cell apoptosis in CRC cell lines. In Gene Ontology (GO) term analysis using RNA-seq data, apoptosis-related terms were enriched after EHMT1 knockdown. Moreover, we identified the CHOP gene as a direct target of EHMT1 using a ChIP (chromatin immunoprecipitation) assay with an anti-histone 3 lysine 9 dimethylation (H3K9me2) antibody. Finally, after cotransfection with siEHMT1 and siCHOP, we again confirmed that CHOP-mediated cell apoptosis was induced by EHMT1 knockdown. Our findings reveal that EHMT1 plays a key role in regulating CRC cell apoptosis, suggesting that EHMT1 may be a therapeutic target for the development of cancer inhibitors.

Keywords

Acknowledgement

This work was supported by a grant from the Technology Innovation Program (No. 20008777) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea), a National Research Foundation of Korea (NRF) grant funded by the Ministry of Science, ICT, and Future Planning (NRF-2020R1A2B5B01002028, NRF-2018M3A9H3023077/NRF-2021M3A9H3016046), a Korean Fund for Regenerative Medicine (KFRM) grant funded by the Korean government (the Ministry of Science and ICT, the Ministry of Health & Welfare, 21A0404L1), and the KRIBB Research Initiative Program. The funders had no role in the study design, data collection or analysis, decision to publish, or preparation of the manuscript.

References

  1. Ausserlechner, M.J., Obexer, P., Bock, G., Geley, S., and Kofler, R. (2004). Cyclin D3 and c-MYC control glucocorticoid-induced cell cycle arrest but not apoptosis in lymphoblastic leukemia cells. Cell Death Differ. 11, 165-174. https://doi.org/10.1038/sj.cdd.4401328
  2. Baretti, M. and Azad, N.S. (2018). The role of epigenetic therapies in colorectal cancer. Curr. Probl. Cancer 42, 530-547. https://doi.org/10.1016/j.currproblcancer.2018.03.001
  3. Carracedo, A., Gironella, M., Lorente, M., Garcia, S., Guzman, M., Velasco, G., and Iovanna, J.L. (2006). Cannabinoids induce apoptosis of pancreatic tumor cells via endoplasmic reticulum stress-related genes. Cancer Res.66, 6748-6755. https://doi.org/10.1158/0008-5472.CAN-06-0169
  4. Cebrian, A., Pharoah, P.D., Ahmed, S., Ropero, S., Fraga, M.F., Smith, P.L., Conroy, D., Luben, R., Perkins, B., Easton, D.F., et al. (2006). Genetic variants in epigenetic genes and breast cancer risk. Carcinogenesis 27, 1661-1669. https://doi.org/10.1093/carcin/bgi375
  5. Chitnis, N.S., Pytel, D., Bobrovnikova-Marjon, E., Pant, D., Zheng, H., Maas, N.L., Frederick, B., Kushner, J.A., Chodosh, L.A., Koumenis, C., et al. (2012). miR-211 is a prosurvival microRNA that regulates chop expression in a PERK-dependent manner. Mol. Cell 48, 353-364. https://doi.org/10.1016/j.molcel.2012.08.025
  6. Ea, C.K., Hao, S., Yeo, K.S., and Baltimore, D. (2012). EHMT1 protein binds to nuclear factor-κB p50 and represses gene expression. J. Biol. Chem. 287, 31207-31217. https://doi.org/10.1074/jbc.M112.365601
  7. Guan, X., Zhong, X., Men, W., Gong, S., Zhang, L., and Han, Y. (2014). Analysis of EHMT1 expression and its correlations with clinical significance in esophageal squamous cell cancer. Mol. Clin. Oncol. 2, 76-80. https://doi.org/10.3892/mco.2013.207
  8. Guha, P., Kaptan, E., Gade, P., Kalvakolanu, D.V., and Ahmed, H. (2017). Tunicamycin induced endoplasmic reticulum stress promotes apoptosis of prostate cancer cells by activating mTORC1. Oncotarget 8, 68191-68207. https://doi.org/10.18632/oncotarget.19277
  9. Han, X., Luan, T., Sun, Y., Yan, W., Wang, D., and Zeng, X. (2020). MicroRNA 449c mediates the generation of monocytic myeloid-derived suppressor cells by targeting STAT6. Mol. Cells 43, 793-803.
  10. Herz, H.M., Garruss, A., and Shilatifard, A. (2013). SET for life: biochemical activities and biological functions of SET domain-containing proteins. Trends Biochem. Sci. 38, 621-639. https://doi.org/10.1016/j.tibs.2013.09.004
  11. Hsin, I.L., Hsiao, Y.C., Wu, M.F., Jan, M.S., Tang, S.C., Lin, Y.W., Hsu, C.P., and Ko, J.L. (2012). Lipocalin 2, a new GADD153 target gene, as an apoptosis inducer of endoplasmic reticulum stress in lung cancer cells. Toxicol. Appl. Pharmacol. 263, 330-337. https://doi.org/10.1016/j.taap.2012.07.005
  12. Huang, T., Lin, C., Zhong, L.L., Zhao, L., Zhang, G., Lu, A., Wu, J., and Bian, Z. (2017). Targeting histone methylation for colorectal cancer. Therap. Adv. Gastroenterol. 10, 114-131. https://doi.org/10.1177/1756283X16671287
  13. Hwang, S., Kim, S., Kim, K., Yeom, J., Park, S., and Kim, I. (2020). Euchromatin histone methyltransferase II (EHMT2) regulates the expression of ras-related GTP binding C (RRAGC) protein. BMB Rep. 53, 576-581. https://doi.org/10.5483/BMBRep.2020.53.11.055
  14. Jung, G., Hernandez-Illan, E., Moreira, L., Balaguer, F., and Goel, A. (2020). Epigenetics of colorectal cancer: biomarker and therapeutic potential. Nat. Rev. Gastroenterol. Hepatol. 17, 111-130. https://doi.org/10.1038/s41575-019-0230-y
  15. Kim, K., Kwon, O., Ryu, T.Y., Jung, C.R., Kim, J., Min, J.K., Kim, D.S., Son, M.Y., and Cho, H.S. (2019). Propionate of a microbiota metabolite induces cell apoptosis and cell cycle arrest in lung cancer. Mol. Med. Rep. 20, 1569-1574.
  16. Kim, S., Kim, J., Jung, Y., Jun, Y., Jung, Y., Lee, H.Y., Keum, J., Park, B.J., Lee, J., Kim, J., et al. (2020). Characterization of TNNC1 as a novel tumor suppressor of lung adenocarcinoma. Mol. Cells 43, 619-631.
  17. Kleefstra, T., Kramer, J.M., Neveling, K., Willemsen, M.H., Koemans, T.S., Vissers, L.E., Wissink-Lindhout, W., Fenckova, M., van den Akker, W.M., Kasri, N.N., et al. (2012). Disruption of an EHMT1-associated chromatin-modification module causes intellectual disability. Am. J. Hum. Genet. 91, 73-82. https://doi.org/10.1016/j.ajhg.2012.05.003
  18. Koopman, M., Antonini, N.F., Douma, J., Wals, J., Honkoop, A.H., Erdkamp, F.L., de Jong, R.S., Rodenburg, C.J., Vreugdenhil, G., Loosveld, O.J., et al. (2007). Sequential versus combination chemotherapy with capecitabine, irinotecan, and oxaliplatin in advanced colorectal cancer (CAIRO): a phase III randomised controlled trial. Lancet 370, 135-142. https://doi.org/10.1016/S0140-6736(07)61086-1
  19. Kuipers, E.J., Grady, W.M., Lieberman, D., Seufferlein, T., Sung, J.J., Boelens, P.G., van de Velde, C.J., and Watanabe, T. (2015). Colorectal cancer. Nat. Rev. Dis. Primers 1, 15065.
  20. Lee, J., Kim, K., Ryu, T.Y., Jung, C.R., Lee, M.S., Lim, J.H., Park, K., Kim, D.S., Son, M.Y., Hamamoto, R., et al. (2021). EHMT1 knockdown induces apoptosis and cell cycle arrest in lung cancer cells by increasing CDKN1A expression. Mol. Oncol. 15, 2989-3002. https://doi.org/10.1002/1878-0261.13050
  21. Lin, S., Zhang, J., Chen, H., Chen, K., Lai, F., Luo, J., Wang, Z., Bu, H., Zhang, R., Li, H., et al. (2013). Involvement of endoplasmic reticulum stress in capsaicin-induced apoptosis of human pancreatic cancer cells. Evid. Based Complement. Alternat. Med. 2013, 629750.
  22. Ohno, H., Shinoda, K., Ohyama, K., Sharp, L.Z., and Kajimura, S. (2013). EHMT1 controls brown adipose cell fate and thermogenesis through the PRDM16 complex. Nature 504, 163-167. https://doi.org/10.1038/nature12652
  23. Olsen, J.B., Wong, L., Deimling, S., Miles, A., Guo, H., Li, Y., Zhang, Z., Greenblatt, J.F., Emili, A., and Tropepe, V. (2016). G9a and ZNF644 physically associate to suppress progenitor gene expression during neurogenesis. Stem Cell Reports 7, 454-470. https://doi.org/10.1016/j.stemcr.2016.06.012
  24. Park, J.W., Woo, K.J., Lee, J.T., Lim, J.H., Lee, T.J., Kim, S.H., Choi, Y.H., and Kwon, T.K. (2007). Resveratrol induces pro-apoptotic endoplasmic reticulum stress in human colon cancer cells. Oncol. Rep. 18, 1269-1273.
  25. Park, S.K., Sanders, B.G., and Kline, K. (2010). Tocotrienols induce apoptosis in breast cancer cell lines via an endoplasmic reticulum stress-dependent increase in extrinsic death receptor signaling. Breast Cancer Res. Treat.124, 361-375. https://doi.org/10.1007/s10549-010-0786-2
  26. Renneville, A., Van Galen, P., Canver, M.C., McConkey, M., Krill-Burger, J.M., Dorfman, D.M., Holson, E.B., Bernstein, B.E., Orkin, S.H., Bauer, D.E., et al. (2015). EHMT1 and EHMT2 inhibition induces fetal hemoglobin expression. Blood 126, 1930-1939.
  27. Rozpedek, W., Pytel, D., Mucha, B., Leszczynska, H., Diehl, J.A., and Majsterek, I. (2016). The role of the PERK/eIF2α/ATF4/CHOP signaling pathway in tumor progression during endoplasmic reticulum stress. Curr. Mol. Med. 16, 533-544. https://doi.org/10.2174/1566524016666160523143937
  28. Ryu, T.Y., Kim, K., Son, M.Y., Min, J.K., Kim, J., Han, T.S., Kim, D.S., and Cho, H.S. (2019). Downregulation of PRMT1, a histone arginine methyltransferase, by sodium propionate induces cell apoptosis in colon cancer. Oncol. Rep. 41, 1691-1699.
  29. Sanchez-Lopez, E., Zimmerman, T., Gomez del Pulgar, T., Moyer, M.P., Lacal Sanjuan, J.C., and Cebrian, A. (2013). Choline kinase inhibition induces exacerbated endoplasmic reticulum stress and triggers apoptosis via CHOP in cancer cells. Cell Death Dis. 4, e933.
  30. Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., and Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209-249. https://doi.org/10.3322/caac.21660
  31. Thienpont, B., Aronsen, J.M., Robinson, E.L., Okkenhaug, H., Loche, E., Ferrini, A., Brien, P., Alkass, K., Tomasso, A., Agrawal, A., et al. (2017). The H3K9 dimethyltransferases EHMT1/2 protect against pathological cardiac hypertrophy. J. Clin. Invest. 127, 335-348.
  32. Wang, F., Fu, X.D., Zhou, Y., and Zhang, Y. (2009). Down-regulation of the cyclin E1 oncogene expression by microRNA-16-1 induces cell cycle arrest in human cancer cells. BMB Rep. 42, 725-730. https://doi.org/10.5483/BMBRep.2009.42.11.725
  33. Wang, Y., Pei, X., Xu, P., Tan, Z., Zhu, Z., Zhang, G., Jiang, Z., and Deng, Z. (2020). E2F7, regulated by miR30c, inhibits apoptosis and promotes cell cycle of prostate cancer cells. Oncol. Rep. 44, 849-862. https://doi.org/10.3892/or.2020.7659
  34. Wang, Y., Zhu, L., Guo, M., Sun, G., Zhou, K., Pang, W., Cao, D., Tang, X., and Meng, X. (2021). Histone methyltransferase WHSC1 inhibits colorectal cancer cell apoptosis via targeting anti-apoptotic BCL2. Cell Death Discov. 7, 19.
  35. Xie, Y.H., Chen, Y.X., and Fang, J.Y. (2020). Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct. Target. Ther. 5, 22.
  36. Yang, Y., Shen, J., Yan, D., Yuan, B., Zhang, S., Wei, J., and Du, T. (2018). Euchromatic histone lysine methyltransferase 1 regulates cancer development in human gastric cancer by regulating E-cadherin. Oncol. Lett. 15, 9480-9486.
  37. Yuan, L., Zhang, Y., Xia, J., Liu, B., Zhang, Q., Liu, J., Luo, L., Peng, Z., Song, Z., and Zhu, R. (2015). Resveratrol induces cell cycle arrest via a p53- independent pathway in A549 cells. Mol. Med. Rep. 11, 2459-2464. https://doi.org/10.3892/mmr.2014.3100
  38. Zhang, M., Du, H., Huang, Z., Zhang, P., Yue, Y., Wang, W., Liu, W., Zeng, J., Ma, J., Chen, G., et al. (2018). Thymoquinone induces apoptosis in bladder cancer cell via endoplasmic reticulum stress-dependent mitochondrial pathway. Chem. Biol. Interact. 292, 65-75. https://doi.org/10.1016/j.cbi.2018.06.013