DOI QR코드

DOI QR Code

Genome-wide identification of histone lysine methyltransferases and their implications in the epigenetic regulation of eggshell formation-related genes in a trematode parasite Clonorchis sinensis

  • Min-Ji Park (Department of Microbiology, College of Medicine and Lee Gil Ya Cancer and Diabetes Institute, Gachon University) ;
  • Woon-Mok Sohn (Department of Parasitology and Tropical Medicine, Institute of Health Sciences, Gyeongsang National University College of Medicine) ;
  • Young-An Bae (Department of Microbiology, College of Medicine and Lee Gil Ya Cancer and Diabetes Institute, Gachon University)
  • Received : 2023.11.17
  • Accepted : 2023.12.20
  • Published : 2024.02.29

Abstract

Epigenetic writers including DNA and histone lysine methyltransferases (DNMT and HKMT, respectively) play an initiative role in the differentiation and development of eukaryotic organisms through the spatiotemporal regulation of functional gene expressions. However, the epigenetic mechanisms have long been suspected in helminth parasites lacking the major DNA methyltransferases DNMT1 and DNMT3a/3b. Very little information on the evolutionary status of the epigenetic tools and their role in regulating chromosomal genes is currently available in the parasitic trematodes. We previously suggested the probable role of a DNMT2-like protein (CsDNMT2) as a genuine epigenetic writer in a trematode parasite Clonorchis sinensis. Here, we analyzed the phylogeny of HKMT subfamily members in the liver fluke and other platyhelminth species. The platyhelminth genomes examined conserved genes for the most of SET domain-containing HKMT and Disruptor of Telomeric Silencing 1 subfamilies, while some genes were expanded specifically in certain platyhelminth genomes. Related to the high gene dosages for HKMT activities covering differential but somewhat overlapping substrate specificities, variously methylated histones were recognized throughout the tissues/organs of C. sinensis adults. The temporal expressions of genes involved in eggshell formation were gradually decreased to their lowest levels proportionally to aging, whereas those of some epigenetic tool genes were re-boosted in the later adult stages of the parasite. Furthermore, these expression levels were significantly affected by treatment with DNMT and HKMT inhibitors. Our data strongly suggest that methylated histones are potent epigenetic markers that modulate the spatiotemporal expressions of C. sinensis genes, especially those involved in sexual reproduction.

Keywords

Acknowledgement

This work was supported by the Basic Science Research Programs of the National Research Foundation of Korea (NRF), funded by the Ministry of Education (NRF-2017R1D1A1B03028355) and by the Gachon University research fund of 2018 (GCU-2018-0329) to YAB.

References

  1. Luger K, Hansen JC. Nucleosome and chromatin fiber dynamics. Curr Opin Struct Biol 2005;15(2):188-196. https://doi.org/10.1016/j.sbi.2005.03.006
  2. Demetriadou C, Koufaris C, Kirmizis A. Histone N-alpha terminal modifications: genome regulation at the tip of the tail. Epigenetics Chromatin 2020;13(1):29. https://doi.org/10.1186/s13072-020-00352-w
  3. Hyun K, Jeon J, Kihyun P, Kim J. Writing, erasing, and reading histone lysine methylations. Exp Mol Med 2017;49(4):e324. https://doi.org/10.1038/emm.2017.11
  4. Chi P, Allis CD, Wang GG. Covalent histone modifications: miswritten, misinterpreted, and miserased in human cancers. Nat Rev Cancer 2010;10(7):457-469. https://doi.org/10.1038/nrc2876
  5. Gibney ER, Nolan CM. Epigenetics and gene expression. Heredity 2010;105(1):4-13. https://doi.org/10.1038/hdy.2010.54
  6. Perri F, Longo F, Giuliano M, Sabbationo F, Favia G, et al. Epigenetic control of gene expression: potential implications for cancer treatment. Crit Rev Oncol Hematol 2017;111:166-172. https://doi.org/10.1016/j.critrevonc.2017.01.020
  7. Dillon SC, Zhang X, Trievel RC, Cheng X. The SET-domain protein superfamily: protein lysine methyltransferases. Genome Biol 2005;6(8):227. https://doi.org/10.1186/gb-2005-6-8-227
  8. Luo M. Chemical and biochemical perspectives of protein lysine methylation. Chem Rev 2018;118(14):6656-6705. https://doi.org/10.1021/acs.chemrev.8b00008
  9. Jeltsch A, Broche J, Bashtrykov P. Molecular processes connecting DNA methylation patterns with DNA methyltransferases and histone modifications in mammalian genomes. Genes (Basel) 2018;9(11):566. https://doi.org/10.3390/genes9110566
  10. Weiner AKM, Ceron-Romera MA, Yan Y, Katz LA. Phylogenomics of the epigenetic toolkit reveals punctate retention of genes across eukaryotes. Genome Biol Evol 2020;12(12):2196-2210. https://doi.org/10.1093/gbe/evaa198
  11. Schaefer M, Lyko F. Solving the Dnmt2 enigma. Chromosoma 2010;119(1):35-40. https://doi.org/10.1007/s00412-009-0240-6
  12. Raddatz G, Guzzardo PM, Olova N, Fantappie MR, Rampp M, et al. Dnmt2-dependent methylomes lack defined DNA methylation patterns. Proc Natl Acad Sci USA 2013;110(21):8627-8631. https://doi.org/10.1073/pnas.1306723110
  13. Geyer KK, Chalmers IW, Mackintosh N, Hirst JE, Geoghegan R, et al. Cytosine methylation is a conserved epigenetic feature found throughout the phylum Platyhelminthes. BMC Genomics 2013;14:462. https://doi.org/10.1186/1471-2164-14-462
  14. Roquis D, Taudt A, Geyer KK, Padalino G, Hoffmann KF, et al. Histone methylation changes are required for life cycle progression in the human parasite Schistosoma mansoni. PLoS Pathog 2018;14(5):e1007066. https://doi.org/10.1371/journal.ppat.1007066
  15. Keizer J, Utzinger J. Food-borne trematodiases. Clin Microbiol Rev 2009;22(3):466-483. https://doi.org/10.1128/CMR.00012-09
  16. Kim HS, Nam HW, Ahn HJ, Kim D, Kim YH. Relationship between Clonorchis sinensis infection and cholangiocarcinoma in Korea. Parasites Hosts Dis 2022;60(4):261-271. https://doi.org/10.3347/kjp.2022.60.4.261
  17. Bouvard V, Baan R, Straif K, Grosse Y, Secretan B, et al. A review of human carcinogens - Part B: biological agents. Lancet Oncol 2009;10(4):321-322. https://doi.org/10.1016/s1470-2045(09)70096-8
  18. Smyth JD, Halton DW. The Physiology of trematodes. 2nd. Cambridge University Press, Cambridge, New York. 1983.
  19. Wang X, Chen W, Huang Y, Sun J, Men J, et al. The draft genome of the carcinogenic human liver fluke Clonorchis sinensis. Genome Biol 2011;12(10):R107. https://doi.org/10.1186/gb-2011-12-10-r107
  20. Huang Y, Chen W, Wang X, Liu H, Chen Y, et al. The carcinogenic liver fluke, Clonorchis sinensis: new assembly, reannotation and analysis of the genome and characterization of tissue transcriptomes. PLoS One 2013;8(1):e54732. https://doi.org/10.1371/journal.pone.0054732
  21. Kim SH, Cho HJ, Sohn WM, Ahn CS, Kong Y, et al. Egg-specific expression of protein with DNA methyltransferase activity in the biocarcinogenic liver fluke Clonorchis sinensis. Parasitology 2015;142(9):1228-1238. https://doi.org/10.1017/S0031182015000566
  22. Volkel P, Angrand PO. The control of histone lysine methylation in epigenetic regulation. Biochimie 2007;89(1):1-20. https://doi.org/10.1016/j.biochi.2006.07.009
  23. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010;59(3):307-321. https://doi.org/10.1093/sys-bio/syq010
  24. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018;35(6):1547-1549. https://doi.org/10.1093/molbev/msy096
  25. Kim SH, Bae AY. Lineage-specific expansion and loss of tyrosinase genes across platyhelminths and their induction profiles in the carcinogenic oriental liver fluke, Clonorchis sinensis. Parasitology 2017;144(10):1316-1327. https://doi.org/10.1017/S003118201700083X
  26. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 2001;25(4):402-408. http://doi.org/10.1006/meth.2001.1262
  27. Marmorstein R. Strucutre of SET domain proteins: a new twist on histone methylation. Trends Biochem Sci 2003;28(2):59-62. https://doi.org/10.1016/S0968-0004(03)00007-0
  28. Min J, Feng Q, Li Z, Zhang Y, Xu RM. Structure of the catalytic domain of human DOT1L, a non-SET domain nucleosomal histone methyltransferase. Cell 2003;112(5):711-723. https://doi.org/10.1016/s0092-8674(03)00114-4
  29. Kim SH, Yang D, Bae YA. Hypoxic and nitrosative stress conditions modulate expression of myoglobin genes in a carcinogenic hepatobiliary trematode, Clonorchis sinensis. PLoS Negl Trop Dis 2021;15(9):e0009811. https://doi.org/10.1371/journal.pntd.0009811
  30. Jeltsch A, Ehrenhofer-Murray A, Jurkowski TP, Lyko F, Reuter G, et al. Mechanism and biological role of Dnmt2 in nucleic acid methylation. RNA Biol 2017;14(9):1108-1123. https://doi.org/10.1080/15476286.2016.1191737
  31. Geyer KK, Rodriguez Lopez CM, Chalmers IW, Munshi SE, Truscott M, et al. Cytosine methylation regulates oviposition in the pathogenic blood fluke Schistosoma mansoni. Nat Commun 2011;2:424. https://doi.org/10.1038/ncomms1433
  32. Ng DWK, Wang T, Chandrasekharan MB, Aramayo R, Kertbundit S, et al. Plant SET domain-containing proteins: structure, function and regulation. Biochim Biophys Acta 2007;1769(5-6): 316-329. https://doi.org/10.1016/j.bbaexp.2007.04.003
  33. Qian MB, Utzinger J, Keiser J, Zhou XN. Clonorchiasis. Lancet 2016;387(10020):800-810. https://doi.org/10.1016/S0140-6736(15)60313-0
  34. Jambhekar A, Dhall A, Shi Y. Roles and regulation of histone methylation in animal development. Nat Rev Mol Cell Biol 2019;20(10):625-641. https://doi.org/10.1038/s41580-019-0151-1
  35. Bogitsh BJ, Carter CE, Oeltmann TN. Human parasitology. 3rd ed. Elsevier Academic Press. Amsterdam, Netherland. 2005, pp 207-210.
  36. Kim JI, Chung DI, Choi DW. Egg production of Clonorchis sinensis in different strains of inbred mice. Parasites Hosts Dis 1992;30(3):169-175. https://doi.org/10.3347/kjp.1992.30.3.169
  37. Miranda TB, Cortez CC, Yoo CB, Liang G, Abe M, et al. DZNep is a global histone methylation inhibitor that reactivates developmental genes not silenced by DNA methylation. Mol Cancer Ther 2009;8(6):1579-1588. https://doi.org/10.1158/1535-7163.MCT-09-0013
  38. Datta J, Ghoshal K, Denny WA, Gamage SA, Brooke DG, et al. A new class of quinoline-based DNA hypomethylating agents reactivates tumor suppressor genes by blocking DNA methyltransferase 1 activity and inducing its degradation. Cancer Res 2009;69(10):4277-4285. https://doi.org/10.1158/0008-5472.CAN-08-3669
  39. Licciardello MP, Kubicek S. Targeting histone methylation: the development of selective methyltransferase and demethylase inhibitors. In Egger G, Arimondo P eds, Drug discovery in cancer epigenetics. Academic Press. San Diego, USA. 2016, pp 209-238.
  40. Rose NR, Klose RJ. Understanding the relationship between DNA methylation and histone lysine methylation. Biochim Biophys Acta 2014;1839(12):1362-1372. https://doi.org/10.1016/j.bbagrm.2014.02.007