Browse > Article
http://dx.doi.org/10.14348/molcells.2015.0053

Proper Activity of Histone H3 Lysine 4 (H3K4) Methyltransferase Is Required for Morphogenesis during Zebrafish Cardiogenesis  

Kim, Jun-Dae (School of Life Science and Biotechnology (BK 21 plus program), Kyungpook National University)
Kim, Eunmi (School of Life Science and Biotechnology (BK 21 plus program), Kyungpook National University)
Koun, Soonil (School of Life Science and Biotechnology (BK 21 plus program), Kyungpook National University)
Ham, Hyung-Jin (School of Life Science and Biotechnology (BK 21 plus program), Kyungpook National University)
Rhee, Myungchull (Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University)
Kim, Myoung-Jin (School of Life Science and Biotechnology (BK 21 plus program), Kyungpook National University)
Huh, Tae-Lin (School of Life Science and Biotechnology (BK 21 plus program), Kyungpook National University)
Abstract
While increasing evidence indicates the important function of histone methylation during development, how this process influences cardiac development in vertebrates has not been explored. Here, we elucidate the functions of two histone H3 lysine 4 (H3K4) methylation enzymes, SMYD3 and SETD7, during zebrafish heart morphogenesis using gene expression profiling by whole mount in situ hybridization and antisense morpholino oligonucleotide (MO)-based gene knockdown. We find both smyd3 and setd7 are highly expressed within developing zebrafish heart and knock-down of these genes led to severe defects in cardiac morphogenesis without altering the expressions pattern of heart markers, including cmlc2, vmhc, and amhc. Furthermore, double knock-down by coinjection of smyd3 and setd7 MOs caused the synergistic defects in heart development. As similar to knock-down effect, overexpression of these genes also caused the heart morphogenesis defect in zebrafish. These results indicate that histone modifying enzymes, SMYD3 and SETD7, appear to function synergistically during heart development and their proper functioning is essential for normal heart morphogenesis during development.
Keywords
heart morphogenesis; histone methyltransferase; SETD7; SMYD3; zebrafish;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Arrowsmith, C.H., Bountra, C., Fish, P.V., Lee, K., and Schapira, M. (2012). Epigenetic protein families: a new frontier for drug discovery. Nat. Rev. Drug Discov. 11, 384-400.   DOI   ScienceOn
2 Barnett, P., van den Boogaard, M., and Christoffels, V. (2012). Localized and temporal gene regulation in heart development. Curr. Top. Dev. Biol. 100, 171-201.   DOI   ScienceOn
3 Bhaumik, S.R., Smith, E., and Shilatifard, A. (2007). Covalent modifications of histones during development and disease pathogenesis. Nat. Struct. Mol. Biol. 14, 1008-1016.   DOI   ScienceOn
4 Black, J.C., Van, Rechem, C., and Whetstine, J.R. (2012). Histone lysine methylation dynamics: establishment, regulation, and biological impact. Mol. Cell 48, 491-507.   DOI   ScienceOn
5 Campaner, S., Spreafico, F., Burgold, T., Doni, M., Rosato, U., Amati, B., and Testa, G. (2011). The methyltransferase Set7/9 (Setd7) is dispensable for the p53-mediated DNA damage response in vivo. Mol. Cell 43, 681-688.   DOI   ScienceOn
6 Cayuso, Mas, J., Noel, E.S., and Ober, E.A. (2011). Chromatin modification in zebrafish development. Methods Cell Biol. 104, 401-428.   DOI   ScienceOn
7 Del Rizzo, P.A., and Trievel, R.C. (2011). Substrate and product specificities of SET domain methyltransferases. Epigenetics 6, 1059-1067.   DOI
8 Dillon, S.C., Zhang, X., Trievel, R.C., and Cheng, X. (2005). The SETdomain protein superfamily: protein lysine methyltransferases. Genome Biol. 6, 227.   DOI
9 Esteve, P.O., Chin, H.G., Benner, J., Feehery, G.R., Samaranayake, M., Horwitz, G.A., Jacobsen, S.E., and Pradhan, S. (2009). Regulation of DNMT1 stability through SET7-mediated lysine methylation in mammalian cells. Proc. Natl. Acad. Sci. USA106, 5076-5081.   DOI   ScienceOn
10 Foreman, K.W., Brown, M., Park, F., Emtage, S., Harriss, J., Das, C., Zhu, L., Crew, A., Arnold, L., Shaaban, S., and Tucker, P. (2011). Structural and functional profiling of the human histone methyltransferase SMYD3. PLoS One 6, e22290.   DOI
11 Frank, B., Hemminki, K., Wappenschmidt, B., Klaes, R., Meindl, A., Schmutzler, R.K., Bugert, P., Untch, M., Bartram, C.R., and Burwinkel, B. (2006). Variable number of tandem repeats polymorphism in the SMYD3 promoter region and the risk of familial breast cancer. Int. J. Cancer 118, 2917-2918.   DOI   ScienceOn
12 Fujii, T., Tsunesumi, S., Yamaguchi, K., Watanabe, S., and Furukawa, Y. (2011). Smyd3 is required for the development of cardiac and skeletal muscle in zebrafish. PLoS One 6, e23491.   DOI
13 Hamamoto, R., Furukawa, Y., Morita, M., Iimura, Y., Silva, F.P., Li, M., Yagyu, R., and Nakamura, Y. (2004). SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat. Cell Biol. 6, 731-740.   DOI   ScienceOn
14 Hamamoto, R., Silva, F.P., Tsuge, M., Nishidate, T., Katagiri, T., Nakamura, Y., and Furukawa, Y. (2006). Enhanced SMYD3 expression is essential for the growth of breast cancer cells. Cancer Sci. 97, 113-118.   DOI   ScienceOn
15 Helin, K., and Dhanak, D. (2013). Chromatin proteins and modifications as drug targets. Nature 502, 480-488.   DOI   ScienceOn
16 Kim, J.D., Kim, H.J., Koun, S., Ham, H.J., Kim, M.J., Rhee, M., and Huh, T.L. (2014). Zebrafish Crip2 plays a critical role in atrioventricular valve development by downregulating the expression of ECM genes in the endocardial cushion. Mol. Cells 37, 406-411.   DOI   ScienceOn
17 Huang, C.J., Tu, C.T., Hsiao, C.D., Hsieh, F.J., and Tsai, H.J. (2003). Germ-line transmission of a myocardium-specific GFP transgene reveals critical regulatory elements in the cardiac myosin light chain 2 promoter of zebrafish. Dev. Dyn. 228, 30-40.   DOI   ScienceOn
18 Kim, B., Kang, S., and Kim, S.J. (2012a). Differential promoter methylation and histone modification contribute to the brain specific expression of the mouse Mbu-1 gene. Mol. Cells 34, 433-437.   DOI
19 Kim, Y.S., Kim, M.J., Koo, T.H., Kim, J.D., Koun, S., Ham, H.J., Lee, Y.M., Rhee, M., Yeo, S.Y., and Huh, T.L. (2012b). Histone deacetylase is required for the activation of Wnt/${\beta}$-catenin signaling crucial for heart valve formation in zebrafish embryos. Biochem. Biophys. Res. Commun. 423, 140-146.   DOI   ScienceOn
20 Lehnertz, B., Rogalski, J.C., Schulze, F.M., Yi, L., Lin, S., Kast, J., and Rossi, F.M. (2011). p53-dependent transcription and tumor suppression are not affected in Set7/9-deficient mice. Mol. Cell 43, 673-680.   DOI   ScienceOn
21 Oudhoff, M.J., Freeman, S.A., Couzens, A.L., Antignano, F., Kuznetsova, E., Min, P.H., Northrop, J.P., Lehnertz, B., Barsyte-Lovejoy, D., Vedadi, M., et al. (2013). Control of the hippo pathway by Set7-dependent methylation of Yap. Dev. Cell 26, 188-194.   DOI   ScienceOn
22 Pradhan, S., Chin, H.G., Esteve, P.O., and Jacobsen, S.E. (2009). SET7/9 mediated methylation of non-histone proteins in mammalian cells. Epigenetics 4, 383-387.   DOI
23 Sims, R.J., and Reinberg, D. (2004). From chromatin to cancer: a new histone lysine methyltransferase enters the mix. Nat. Cell Biol. 6, 685-687.   DOI   ScienceOn
24 Proserpio, V., Fittipaldi, R., Ryall, J.G., Sartorelli, V., and Caretti, G. (2013). The methyltransferase SMYD3 mediates the recruitment of transcriptional cofactors at the myostatin and c-Met genes and regulates skeletal muscle atrophy. Genes Dev. 27, 1299-1312.   DOI   ScienceOn
25 Sese, B., Barrero, M.J., Fabregat, M.C., Sander, V. and Izpisua Belmonte, J.C. (2013). SMYD2 is induced during cell differentiation and participates in early development. Int. J. Dev. Biol. 57, 357-364.   DOI   ScienceOn
26 Silva, F.P., Hamamoto, R., Kunizaki, M., Tsuge, M., Nakamura, Y., and Furukawa, Y. (2008). Enhanced methyltransferase activity of SMYD3 by the cleavage of its N-terminal region in human cancer cells. Oncogene 27, 2686-2692.   DOI   ScienceOn
27 Tao, Y., Neppl, R.L., Huang, Z.P., Chen, J., Tang, R.H., Cao, R., Zhang, Y., Jin, S.W., and Wang, D.Z. (2011). The histone methyltransferase Set7/9 promotes myoblast differentiation and myofibril assembly. J. Cell Biol. 194, 551-565.   DOI   ScienceOn
28 Thisse, C., and Thisse, B. (2008). High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat. Protoc. 3, 59-69.   DOI   ScienceOn
29 Van Aller, G.S., Reynoird, N., Barbash, O., Huddleston, M., Liu, S., Zmoos, A.F., McDevitt, P., Sinnamon, R., Le, B., Mas, G., et al. (2012). Smyd3 regulates cancer cell phenotypes and catalyzes histone H4 lysine 5 methylation. Epigenetics 7, 340-343.   DOI
30 Wamstad, J.A., Alexander, J.M., Truty, R.M., Shrikumar, A., Li, F., Eilertson, K.E., Ding, H., Wylie, J.N., Pico, A.R., Capra, J.A., et al. (2012). Dynamic and coordinated epigenetic regulation of developmental transitions in the cardiac lineage. Cell 151, 206-220.   DOI   ScienceOn
31 Wang, H., Cao, R., Xia, L., Erdjument-Bromage, H., Borchers, C., Tempst, P., and Zhang, Y. (2001). Purification and functional characterization of a histone H3-lysine 4-specific methyltransferase. Mol. Cell 8, 1207-1217.   DOI   ScienceOn
32 Wang, Q.T. (2012). Epigenetic regulation of cardiac development and function by polycomb group and trithorax group proteins. Dev. Dyn. 241, 1021-1033.   DOI   ScienceOn
33 Westerfield, M. (1993). The Zebrafish book : a guide for the laboratory use of zebrafish (Brachydanio rerio). (Eugene, USA: University of Oregon Press).
34 Yang, J., Huang, J., Dasgupta, M., Sears, N., Miyagi, M., Wang, B., Chance, M.R., Chen, X., Du, Y., Wang, Y., et al. (2010). Reversible methylation of promoter-bound STAT3 by histonemodifying enzymes. Proc. Natl. Acad. Sci. USA 107, 21499-21504.   DOI   ScienceOn